run_flax_ner.py 34.4 KB
Newer Older
Kamal Raj's avatar
Kamal Raj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning a 馃 Flax Transformers model on token classification tasks (NER, POS, CHUNKS)"""
Suraj Patil's avatar
Suraj Patil committed
17
import json
Kamal Raj's avatar
Kamal Raj committed
18
import logging
19
import math
Kamal Raj's avatar
Kamal Raj committed
20
21
22
23
import os
import random
import sys
import time
24
import warnings
25
26
from dataclasses import asdict, dataclass, field
from enum import Enum
Kamal Raj's avatar
Kamal Raj committed
27
from itertools import chain
28
from pathlib import Path
Kamal Raj's avatar
Kamal Raj committed
29
30
31
from typing import Any, Callable, Dict, Optional, Tuple

import datasets
32
import evaluate
Kamal Raj's avatar
Kamal Raj committed
33
34
import jax
import jax.numpy as jnp
35
import numpy as np
Kamal Raj's avatar
Kamal Raj committed
36
import optax
37
from datasets import ClassLabel, load_dataset
Kamal Raj's avatar
Kamal Raj committed
38
from flax import struct, traverse_util
39
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
Kamal Raj's avatar
Kamal Raj committed
40
41
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
42
from huggingface_hub import HfApi
43
44
45
from tqdm import tqdm

import transformers
Kamal Raj's avatar
Kamal Raj committed
46
47
48
49
50
from transformers import (
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForTokenClassification,
    HfArgumentParser,
Suraj Patil's avatar
Suraj Patil committed
51
    is_tensorboard_available,
Kamal Raj's avatar
Kamal Raj committed
52
)
53
from transformers.utils import check_min_version, send_example_telemetry
Kamal Raj's avatar
Kamal Raj committed
54
55
56
57
58
from transformers.utils.versions import require_version


logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
59
check_min_version("4.40.0.dev0")
Kamal Raj's avatar
Kamal Raj committed
60
61
62
63
64
65
66
67

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

Array = Any
Dataset = datasets.arrow_dataset.Dataset
PRNGKey = Any


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


Kamal Raj's avatar
Kamal Raj committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
153
154
    token: str = field(
        default=None,
Kamal Raj's avatar
Kamal Raj committed
155
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
156
            "help": (
157
158
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
159
            )
Kamal Raj's avatar
Kamal Raj committed
160
161
        },
    )
162
163
164
    use_auth_token: bool = field(
        default=None,
        metadata={
165
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
166
167
        },
    )
168
169
170
171
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
172
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
173
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
174
175
176
177
                "execute code present on the Hub on your local machine."
            )
        },
    )
Kamal Raj's avatar
Kamal Raj committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
    )
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
220
221
222
223
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Kamal Raj's avatar
Kamal Raj committed
224
225
226
227
228
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
229
230
231
232
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Kamal Raj's avatar
Kamal Raj committed
233
234
235
236
237
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
238
239
240
241
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Kamal Raj's avatar
Kamal Raj committed
242
243
244
245
246
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
247
248
249
250
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
Kamal Raj's avatar
Kamal Raj committed
251
252
253
254
255
        },
    )
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
256
257
258
259
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
Kamal Raj's avatar
Kamal Raj committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        },
    )
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()


def create_train_state(
    model: FlaxAutoModelForTokenClassification,
    learning_rate_fn: Callable[[int], float],
    num_labels: int,
    training_args: TrainingArguments,
) -> train_state.TrainState:
    """Create initial training state."""

    class TrainState(train_state.TrainState):
        """Train state with an Optax optimizer.

        The two functions below differ depending on whether the task is classification
        or regression.

        Args:
          logits_fn: Applied to last layer to obtain the logits.
          loss_fn: Function to compute the loss.
        """

        logits_fn: Callable = struct.field(pytree_node=False)
        loss_fn: Callable = struct.field(pytree_node=False)

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
308
309
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
310
311
312
313
314
315
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
316
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
Kamal Raj's avatar
Kamal Raj committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        return traverse_util.unflatten_dict(flat_mask)

    tx = optax.adamw(
        learning_rate=learning_rate_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    def cross_entropy_loss(logits, labels):
        xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels))
        return jnp.mean(xentropy)

    return TrainState.create(
        apply_fn=model.__call__,
        params=model.params,
        tx=tx,
        logits_fn=lambda logits: logits.argmax(-1),
        loss_fn=cross_entropy_loss,
    )


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
343
) -> Callable[[int], jnp.ndarray]:
Kamal Raj's avatar
Kamal Raj committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int):
    """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices."""
    steps_per_epoch = len(dataset) // batch_size
    perms = jax.random.permutation(rng, len(dataset))
    perms = perms[: steps_per_epoch * batch_size]  # Skip incomplete batch.
    perms = perms.reshape((steps_per_epoch, batch_size))

    for perm in perms:
        batch = dataset[perm]
        batch = {k: np.array(v) for k, v in batch.items()}
        batch = shard(batch)

        yield batch


def eval_data_collator(dataset: Dataset, batch_size: int):
371
372
373
374
375
376
377
378
    """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop."""
    batch_idx = np.arange(len(dataset))

    steps_per_epoch = math.ceil(len(dataset) / batch_size)
    batch_idx = np.array_split(batch_idx, steps_per_epoch)

    for idx in batch_idx:
        batch = dataset[idx]
Kamal Raj's avatar
Kamal Raj committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        batch = {k: np.array(v) for k, v in batch.items()}

        yield batch


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

397
    if model_args.use_auth_token is not None:
398
399
400
401
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
402
403
404
405
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

406
407
408
409
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args, framework="flax")

Kamal Raj's avatar
Kamal Raj committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

425
426
    # Handle the repository creation
    if training_args.push_to_hub:
427
428
429
430
431
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
432
433
        api = HfApi()
        repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
434

Kamal Raj's avatar
Kamal Raj committed
435
436
437
438
439
440
441
442
443
444
445
446
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
447
448
449
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
450
            token=model_args.token,
Kamal Raj's avatar
Kamal Raj committed
451
452
453
454
455
456
457
458
459
        )
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1]
460
461
462
463
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
464
            token=model_args.token,
465
        )
Kamal Raj's avatar
Kamal Raj committed
466
    # See more about loading any type of standard or custom dataset at
467
    # https://huggingface.co/docs/datasets/loading_datasets.
Kamal Raj's avatar
Kamal Raj committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        label2id=label_to_id,
        id2label={i: l for l, i in label_to_id.items()},
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
518
        token=model_args.token,
519
        trust_remote_code=model_args.trust_remote_code,
Kamal Raj's avatar
Kamal Raj committed
520
521
522
523
524
525
526
    )
    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
527
            token=model_args.token,
528
            trust_remote_code=model_args.trust_remote_code,
Kamal Raj's avatar
Kamal Raj committed
529
530
531
532
533
534
535
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
536
            token=model_args.token,
537
            trust_remote_code=model_args.trust_remote_code,
Kamal Raj's avatar
Kamal Raj committed
538
539
540
541
542
543
        )
    model = FlaxAutoModelForTokenClassification.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
544
        token=model_args.token,
545
        trust_remote_code=model_args.trust_remote_code,
Kamal Raj's avatar
Kamal Raj committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    )

    # Preprocessing the datasets
    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            max_length=data_args.max_seq_length,
            padding="max_length",
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )

        labels = []

        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    processed_raw_datasets = raw_datasets.map(
        tokenize_and_align_labels,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
        remove_columns=raw_datasets["train"].column_names,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Define a summary writer
Suraj Patil's avatar
Suraj Patil committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(training_args.output_dir)
            summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)})
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
Kamal Raj's avatar
Kamal Raj committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

    def write_train_metric(summary_writer, train_metrics, train_time, step):
        summary_writer.scalar("train_time", train_time, step)

        train_metrics = get_metrics(train_metrics)
        for key, vals in train_metrics.items():
            tag = f"train_{key}"
            for i, val in enumerate(vals):
                summary_writer.scalar(tag, val, step - len(vals) + i + 1)

    def write_eval_metric(summary_writer, eval_metrics, step):
        for metric_name, value in eval_metrics.items():
            summary_writer.scalar(f"eval_{metric_name}", value, step)

    num_epochs = int(training_args.num_train_epochs)
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

    train_batch_size = training_args.per_device_train_batch_size * jax.local_device_count()
637
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
Kamal Raj's avatar
Kamal Raj committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    eval_batch_size = training_args.per_device_eval_batch_size * jax.local_device_count()

    learning_rate_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    state = create_train_state(model, learning_rate_fn, num_labels=num_labels, training_args=training_args)

    # define step functions
    def train_step(
        state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
    ) -> Tuple[train_state.TrainState, float]:
        """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
        targets = batch.pop("labels")

        def loss_fn(params):
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = state.loss_fn(logits, targets)
            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)
        metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
        return new_state, metrics, new_dropout_rng

    p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))

    def eval_step(state, batch):
        logits = state.apply_fn(**batch, params=state.params, train=False)[0]
        return state.logits_fn(logits)

    p_eval_step = jax.pmap(eval_step, axis_name="batch")

678
    metric = evaluate.load("seqeval", cache_dir=model_args.cache_dir)
Kamal Raj's avatar
Kamal Raj committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

    def get_labels(y_pred, y_true):
        # Transform predictions and references tensos to numpy arrays

        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
            for pred, gold_label in zip(y_pred, y_true)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
            for pred, gold_label in zip(y_pred, y_true)
        ]
        return true_predictions, true_labels

    def compute_metrics():
        results = metric.compute()
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    logger.info(f"===== Starting training ({num_epochs} epochs) =====")
    train_time = 0

    # make sure weights are replicated on each device
    state = replicate(state)

    train_time = 0
    step_per_epoch = len(train_dataset) // train_batch_size
    total_steps = step_per_epoch * num_epochs
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        train_start = time.time()
        train_metrics = []

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # train
        for step, batch in enumerate(
            tqdm(
                train_data_collator(input_rng, train_dataset, train_batch_size),
                total=step_per_epoch,
                desc="Training...",
                position=1,
            )
        ):
            state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs)
            train_metrics.append(train_metric)

743
            cur_step = (epoch * step_per_epoch) + (step + 1)
Kamal Raj's avatar
Kamal Raj committed
744
745
746
747
748

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
Suraj Patil's avatar
Suraj Patil committed
749
                if has_tensorboard and jax.process_index() == 0:
Kamal Raj's avatar
Kamal Raj committed
750
751
752
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
753
754
                    f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})"
Kamal Raj's avatar
Kamal Raj committed
755
756
757
758
759
760
761
762
763
                )

                train_metrics = []

            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                eval_metrics = {}
                # evaluate
                for batch in tqdm(
                    eval_data_collator(eval_dataset, eval_batch_size),
764
                    total=math.ceil(len(eval_dataset) / eval_batch_size),
Kamal Raj's avatar
Kamal Raj committed
765
766
767
768
                    desc="Evaluating ...",
                    position=2,
                ):
                    labels = batch.pop("labels")
769
770
                    predictions = pad_shard_unpad(p_eval_step)(
                        state, batch, min_device_batch=per_device_eval_batch_size
Kamal Raj's avatar
Kamal Raj committed
771
                    )
772
773
                    predictions = np.array(predictions)
                    labels[np.array(chain(*batch["attention_mask"])) == 0] = -100
Kamal Raj's avatar
Kamal Raj committed
774
775
776
777
778
779
780
781
782
783
784
785
                    preds, refs = get_labels(predictions, labels)
                    metric.add_batch(
                        predictions=preds,
                        references=refs,
                    )

                eval_metrics = compute_metrics()

                if data_args.return_entity_level_metrics:
                    logger.info(f"Step... ({cur_step}/{total_steps} | Validation metrics: {eval_metrics}")
                else:
                    logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
786
787
                        f"Step... ({cur_step}/{total_steps} | Validation f1: {eval_metrics['f1']}, Validation Acc:"
                        f" {eval_metrics['accuracy']})"
Kamal Raj's avatar
Kamal Raj committed
788
789
                    )

Suraj Patil's avatar
Suraj Patil committed
790
                if has_tensorboard and jax.process_index() == 0:
Kamal Raj's avatar
Kamal Raj committed
791
792
793
794
795
796
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps):
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
797
798
799
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
800
801
802
803
804
805
806
                        api.upload_folder(
                            commit_message=f"Saving weights and logs of step {cur_step}",
                            folder_path=training_args.output_dir,
                            repo_id=repo_id,
                            repo_type="model",
                            token=training_args.hub_token,
                        )
Kamal Raj's avatar
Kamal Raj committed
807
808
        epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}"

Suraj Patil's avatar
Suraj Patil committed
809
810
811
812
813
814
    # Eval after training
    if training_args.do_eval:
        eval_metrics = {}
        eval_loader = eval_data_collator(eval_dataset, eval_batch_size)
        for batch in tqdm(eval_loader, total=len(eval_dataset) // eval_batch_size, desc="Evaluating ...", position=2):
            labels = batch.pop("labels")
815
816
            predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size)
            predictions = np.array(predictions)
Suraj Patil's avatar
Suraj Patil committed
817
818
819
820
821
822
823
824
825
826
827
828
            labels[np.array(chain(*batch["attention_mask"])) == 0] = -100
            preds, refs = get_labels(predictions, labels)
            metric.add_batch(predictions=preds, references=refs)

        eval_metrics = compute_metrics()

        if jax.process_index() == 0:
            eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)

Kamal Raj's avatar
Kamal Raj committed
829
830
831

if __name__ == "__main__":
    main()