test_4bit.py 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
16
import tempfile
17
18
import unittest

19
20
from packaging import version

21
22
23
24
25
26
from transformers import (
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
27
    BitsAndBytesConfig,
28
29
    pipeline,
)
30
31
32
33
34
35
36
37
38
from transformers.testing_utils import (
    is_torch_available,
    require_accelerate,
    require_bitsandbytes,
    require_torch,
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
39
from transformers.utils.versions import importlib_metadata
40
41


42
43
44
45
46
47
def get_some_linear_layer(model):
    if model.config.model_type == "gpt2":
        return model.transformer.h[0].mlp.c_fc
    return model.transformer.h[0].mlp.dense_4h_to_h


48
49
if is_torch_available():
    import torch
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    import torch.nn as nn

    class LoRALayer(nn.Module):
        """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only"""

        def __init__(self, module: nn.Module, rank: int):
            super().__init__()
            self.module = module
            self.adapter = nn.Sequential(
                nn.Linear(module.in_features, rank, bias=False),
                nn.Linear(rank, module.out_features, bias=False),
            )
            small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
            nn.init.normal_(self.adapter[0].weight, std=small_std)
            nn.init.zeros_(self.adapter[1].weight)
            self.adapter.to(module.weight.device)

        def forward(self, input, *args, **kwargs):
            return self.module(input, *args, **kwargs) + self.adapter(input)
69
70
71
72
73
74
75


@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
76
class Base4bitTest(unittest.TestCase):
77
78
79
80
81
82
83
84
    # We keep the constants inside the init function and model loading inside setUp function

    # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
    # Therefore here we use only bloom-1b3 to test our module
    model_name = "bigscience/bloom-1b7"

    # Constant values
    EXPECTED_RELATIVE_DIFFERENCE = (
85
        2.109659552692574  # This was obtained on a RTX Titan so the number might slightly change
86
87
88
    )

    input_text = "Hello my name is"
89
90
91
    EXPECTED_OUTPUTS = set()
    EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
    EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n")
92
    EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University")
93
94
95
96
97
98
99
    MAX_NEW_TOKENS = 10

    def setUp(self):
        # Models and tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)


100
class Bnb4BitTest(Base4bitTest):
101
102
103
104
    def setUp(self):
        super().setUp()

        # Models and tokenizer
105
106
107
        self.model_fp16 = AutoModelForCausalLM.from_pretrained(
            self.model_name, torch_dtype=torch.float16, device_map="auto"
        )
108
        self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
109
110
111
112
113
114
115

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.model_fp16
116
        del self.model_4bit
117
118
119
120

        gc.collect()
        torch.cuda.empty_cache()

121
122
123
124
125
126
127
128
129
130
131
132
133
    def test_quantization_config_json_serialization(self):
        r"""
        A simple test to check if the quantization config is correctly serialized and deserialized
        """
        config = self.model_4bit.config

        self.assertTrue(hasattr(config, "quantization_config"))

        _ = config.to_dict()
        _ = config.to_diff_dict()

        _ = config.to_json_string()

134
135
136
137
138
    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
139
        from bitsandbytes.nn import Params4bit
140
141

        mem_fp16 = self.model_fp16.get_memory_footprint()
142
143
144
        mem_4bit = self.model_4bit.get_memory_footprint()

        self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE)
145
146
        linear = get_some_linear_layer(self.model_4bit)
        self.assertTrue(linear.weight.__class__ == Params4bit)
147
148
149
150
151
152
153
154
155
156

    def test_linear_are_4bit(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        from transformers import T5PreTrainedModel

        self.model_fp16.get_memory_footprint()
        self.model_4bit.get_memory_footprint()
157

158
159
160
161
162
        for name, module in self.model_4bit.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules:
                    # 4-bit parameters are packed in uint8 variables
                    self.assertTrue(module.weight.dtype == torch.uint8)
163
164
165
166
167
168
169
170

    def test_generate_quality(self):
        r"""
        Test the generation quality of the quantized model and see that we are matching the expected output.
        Given that we are operating on small numbers + the testing model is relatively small, we might not get
        the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
        """
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
171
        output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
172

173
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
174

175
176
177
178
179
    def test_generate_quality_config(self):
        r"""
        Test that loading the model with the config is equivalent
        """
        bnb_config = BitsAndBytesConfig()
180
        bnb_config.load_in_4bit = True
181

182
        model_4bit_from_config = AutoModelForCausalLM.from_pretrained(
183
184
185
186
            self.model_name, quantization_config=bnb_config, device_map="auto"
        )

        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
187
        output_sequences = model_4bit_from_config.generate(
188
189
190
            input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10
        )

191
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
192

193
    def test_raise_on_save_pretrained(self):
194
195
196
        r"""
        Test whether trying to save a model after converting it in 8-bit will throw a warning.
        """
197
198
        with self.assertRaises(NotImplementedError), tempfile.TemporaryDirectory() as tmpdirname:
            self.model_4bit.save_pretrained(tmpdirname)
199

200
    def test_raise_if_config_and_load_in_4bit(self):
201
        r"""
202
        Test that loading the model with the config and `load_in_4bit` raises an error
203
204
205
206
207
208
209
        """
        bnb_config = BitsAndBytesConfig()

        with self.assertRaises(ValueError):
            _ = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                quantization_config=bnb_config,
210
                load_in_4bit=True,
211
                device_map="auto",
212
                bnb_4bit_quant_type="nf4",
213
214
            )

215
216
217
218
219
220
221
    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
        Checks also if other models are casted correctly.
        """
        with self.assertRaises(ValueError):
            # Tries with `str`
222
            self.model_4bit.to("cpu")
223
224
225

        with self.assertRaises(ValueError):
            # Tries with a `dtype``
226
            self.model_4bit.to(torch.float16)
227
228
229

        with self.assertRaises(ValueError):
            # Tries with a `device`
230
            self.model_4bit.to(torch.device("cuda:0"))
231
232
233

        with self.assertRaises(ValueError):
            # Tries with a `device`
234
            self.model_4bit.float()
235
236
237

        with self.assertRaises(ValueError):
            # Tries with a `device`
238
            self.model_4bit.half()
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

        # Test if we did not break anything
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        self.model_fp16 = self.model_fp16.to(torch.float32)
        _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Check this does not throw an error
        _ = self.model_fp16.to("cpu")

        # Check this does not throw an error
        _ = self.model_fp16.half()

        # Check this does not throw an error
        _ = self.model_fp16.float()

255
    def test_fp32_4bit_conversion(self):
256
        r"""
257
        Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly.
258
        """
259
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_4bit=True, device_map="auto")
260
261
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)

262

263
264
265
266
267
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
268
class Bnb4BitT5Test(unittest.TestCase):
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    @classmethod
    def setUpClass(cls):
        cls.model_name = "t5-small"
        cls.dense_act_model_name = "google/flan-t5-small"  # flan-t5 uses dense-act instead of dense-relu-dense
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
        cls.input_text = "Translate in German: Hello, my dog is cute"

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        gc.collect()
        torch.cuda.empty_cache()

    def test_inference_without_keep_in_fp32(self):
        r"""
286
        Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly.
287
288
289
290
291
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
        both cases.
        """
        from transformers import T5ForConditionalGeneration

292
        modules = T5ForConditionalGeneration._keep_in_fp32_modules
293
294
295
        T5ForConditionalGeneration._keep_in_fp32_modules = None

        # test with `t5-small`
296
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
297
298
299
300
301
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

        # test with `flan-t5-small`
        model = T5ForConditionalGeneration.from_pretrained(
302
            self.dense_act_model_name, load_in_4bit=True, device_map="auto"
303
304
305
        )
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)
306
        T5ForConditionalGeneration._keep_in_fp32_modules = modules
307
308
309

    def test_inference_with_keep_in_fp32(self):
        r"""
310
        Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly.
311
312
313
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
        both cases.
        """
314
315
        import bitsandbytes as bnb

316
317
318
        from transformers import T5ForConditionalGeneration

        # test with `t5-small`
319
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
320
321

        # there was a bug with decoders - this test checks that it is fixed
322
        self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit))
323

324
325
326
327
328
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

        # test with `flan-t5-small`
        model = T5ForConditionalGeneration.from_pretrained(
329
            self.dense_act_model_name, load_in_4bit=True, device_map="auto"
330
331
332
333
        )
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

334

335
class Classes4BitModelTest(Base4bitTest):
336
337
338
339
    def setUp(self):
        super().setUp()
        # model_name
        self.model_name = "bigscience/bloom-560m"
340
341
342
343
        self.seq_to_seq_name = "t5-small"

        # Different types of model

344
        self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
345
        # Sequence classification model
346
        self.sequence_model = AutoModelForSequenceClassification.from_pretrained(
347
            self.model_name, load_in_4bit=True, device_map="auto"
348
        )
349
        # CausalLM model
350
        self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
351
352
        # Seq2seq model
        self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained(
353
            self.seq_to_seq_name, load_in_4bit=True, device_map="auto"
354
        )
355
356
357
358
359
360
361
362

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.base_model
        del self.sequence_model
363
        del self.model_4bit
364
        del self.seq_to_seq_model
365
366
367
368
369
370
371
372
373

        gc.collect()
        torch.cuda.empty_cache()

    def test_correct_head_class(self):
        r"""
        A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification)
        are kept in their native class.
        """
374
        from bitsandbytes.nn import Params4bit
375

376
        self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit)
377
378

        # Other heads should be nn.Parameter
379
        self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter)
380
        self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
381
        self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
382
383


384
class Pipeline4BitTest(Base4bitTest):
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    def setUp(self):
        super().setUp()

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.pipe

        gc.collect()
        torch.cuda.empty_cache()

    def test_pipeline(self):
        r"""
400
        The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since
401
402
403
404
405
406
407
        we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
        on pipline.
        """
        # self._clear_cuda_cache()
        self.pipe = pipeline(
            "text-generation",
            model=self.model_name,
408
            model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16},
409
410
411
412
413
            max_new_tokens=self.MAX_NEW_TOKENS,
        )

        # Real second forward pass
        pipeline_output = self.pipe(self.input_text)
414
        self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS)
415
416
417


@require_torch_multi_gpu
418
class Bnb4bitTestMultiGpu(Base4bitTest):
419
420
421
422
423
424
425
426
427
428
    def setUp(self):
        super().setUp()

    def test_multi_gpu_loading(self):
        r"""
        This tests that the model has been loaded and can be used correctly on a multi-GPU setup.
        Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice
        """

        model_parallel = AutoModelForCausalLM.from_pretrained(
429
            self.model_name, load_in_4bit=True, device_map="balanced"
430
431
        )

Younes Belkada's avatar
Younes Belkada committed
432
433
        # Check correct device map
        self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1})
434
435
436
437
438
439

        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Second real batch
        output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
440
        self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
441
442


443
class Bnb4BitTestTraining(Base4bitTest):
444
445
446
447
448
449
450
451
452
    def setUp(self):
        self.model_name = "facebook/opt-350m"
        super().setUp()

    def test_training(self):
        if version.parse(importlib_metadata.version("bitsandbytes")) < version.parse("0.37.0"):
            return

        # Step 1: freeze all parameters
453
454
455
        model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True)

        self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

        for param in model.parameters():
            param.requires_grad = False  # freeze the model - train adapters later
            if param.ndim == 1:
                # cast the small parameters (e.g. layernorm) to fp32 for stability
                param.data = param.data.to(torch.float32)

        # Step 2: add adapters
        for _, module in model.named_modules():
            if "OPTAttention" in repr(type(module)):
                module.q_proj = LoRALayer(module.q_proj, rank=16)
                module.k_proj = LoRALayer(module.k_proj, rank=16)
                module.v_proj = LoRALayer(module.v_proj, rank=16)

        # Step 3: dummy batch
        batch = self.tokenizer("Test batch ", return_tensors="pt").to(0)

        # Step 4: Check if the gradient is not None
        with torch.cuda.amp.autocast():
            out = model.forward(**batch)
            out.logits.norm().backward()

        for module in model.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
            elif isinstance(module, nn.Embedding):
                self.assertTrue(module.weight.grad is None)
484
485
486
487
488


class Bnb4BitGPT2Test(Bnb4BitTest):
    model_name = "gpt2-xl"
    EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187