"tests/models/hiera/__init__.py" did not exist on "31c23bd5ee26425a67f92fc170789656379252a6"
test_streamers.py 4.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2023 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
17
from threading import Thread
18

19
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
20
21
22
23
24
25
from transformers.testing_utils import CaptureStdout, require_torch, torch_device

from ..test_modeling_common import ids_tensor


if is_torch_available():
26
27
    import torch

28
29
30
31
32
    from transformers import AutoModelForCausalLM


@require_torch
class StreamerTester(unittest.TestCase):
33
    def test_text_streamer_matches_non_streaming(self):
34
35
36
37
38
39
40
41
42
43
44
45
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
        greedy_text = tokenizer.decode(greedy_ids[0])

        with CaptureStdout() as cs:
            streamer = TextStreamer(tokenizer)
            model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
        # The greedy text should be printed to stdout, except for the final "\n" in the streamer
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        streamer_text = cs.out[:-1]

        self.assertEqual(streamer_text, greedy_text)

    def test_iterator_streamer_matches_non_streaming(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
        greedy_text = tokenizer.decode(greedy_ids[0])

        streamer = TextIteratorStreamer(tokenizer)
        generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        streamer_text = ""
        for new_text in streamer:
            streamer_text += new_text

        self.assertEqual(streamer_text, greedy_text)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    def test_text_streamer_skip_prompt(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
        new_greedy_ids = greedy_ids[:, input_ids.shape[1] :]
        new_greedy_text = tokenizer.decode(new_greedy_ids[0])

        with CaptureStdout() as cs:
            streamer = TextStreamer(tokenizer, skip_prompt=True)
            model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
        # The greedy text should be printed to stdout, except for the final "\n" in the streamer
        streamer_text = cs.out[:-1]

        self.assertEqual(streamer_text, new_greedy_text)

    def test_text_streamer_decode_kwargs(self):
        # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
        # with actual models -- the dummy models' tokenizers are not aligned with their models, and
        # `skip_special_tokens=True` has no effect on them
        tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
        model = AutoModelForCausalLM.from_pretrained("distilgpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id
        with CaptureStdout() as cs:
            streamer = TextStreamer(tokenizer, skip_special_tokens=True)
            model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer)

        # The prompt contains a special token, so the streamer should not print it. As such, the output text, when
        # re-tokenized, must only contain one token
        streamer_text = cs.out[:-1]  # Remove the final "\n"
        streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt")
        self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1))