test_modeling_xlm_prophetnet.py 7.54 KB
Newer Older
Weizhen's avatar
Weizhen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
Lysandre Debut's avatar
Lysandre Debut committed
20
from transformers.testing_utils import require_torch, slow, torch_device
Weizhen's avatar
Weizhen committed
21
22
23
24
25
26
27
28


if is_torch_available():
    import torch

    from transformers import XLMProphetNetForConditionalGeneration, XLMProphetNetTokenizer


Lysandre Debut's avatar
Lysandre Debut committed
29
@require_torch
Weizhen's avatar
Weizhen committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class XLMProphetNetModelIntegrationTest(unittest.TestCase):
    @slow
    def test_pretrained_checkpoint_hidden_states(self):
        model = XLMProphetNetForConditionalGeneration.from_pretrained("microsoft/xprophetnet-large-wiki100-cased")
        model.to(torch_device)

        # encoder-decoder outputs
        encoder_ids = torch.tensor([[17, 96208, 103471, 2]]).to(torch_device)
        decoder_prev_ids = torch.tensor(
            [[2, 250, 9953, 34, 69489, 1620, 32, 118424, 624, 210, 105, 2913, 1032, 351]]
        ).to(torch_device)
        output = model(
            input_ids=encoder_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=decoder_prev_ids
        )
        output_predited_logis = output[0]
        expected_shape = torch.Size((1, 14, 250012))
        self.assertEqual(output_predited_logis.shape, expected_shape)
        expected_slice = torch.tensor(
            [[[-6.6042, -8.3838, 12.4717], [-6.4426, -8.1994, 12.4542], [-6.0851, -7.8209, 12.9493]]]
        ).to(torch_device)
        self.assertTrue(torch.allclose(output_predited_logis[:, :3, :3], expected_slice, atol=1e-4))

        # encoder outputs
        encoder_outputs = model.prophetnet.encoder(encoder_ids)[0]
        expected_encoder_outputs_slice = torch.tensor(
            [[[-1.4260, -0.7628, 0.8453], [-1.4719, -0.1391, 0.7807], [-1.7678, 0.0114, 0.4646]]]
        ).to(torch_device)
        expected_shape_encoder = torch.Size((1, 4, 1024))
        self.assertEqual(encoder_outputs.shape, expected_shape_encoder)
        self.assertTrue(torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4))

        # decoder outputs
        decoder_outputs = model.prophetnet.decoder(
            decoder_prev_ids,
            encoder_hidden_states=encoder_outputs,
        )
        predicting_streams = decoder_outputs[1].view(1, model.config.ngram, 14, -1)
        predicting_streams_logits = model.lm_head(predicting_streams)
        next_first_stream_logits = predicting_streams_logits[:, 0]
        self.assertTrue(torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4))

    @slow
    def test_ntg_hidden_states(self):
        model = XLMProphetNetForConditionalGeneration.from_pretrained(
            "microsoft/xprophetnet-large-wiki100-cased-xglue-ntg"
        )
        model.to(torch_device)

        encoder_ids = torch.tensor([[17, 96208, 103471, 2]]).to(torch_device)
        decoder_prev_ids = torch.tensor(
            [[2, 250, 9953, 34, 69489, 1620, 32, 118424, 624, 210, 105, 2913, 1032, 351]]
        ).to(torch_device)
        output = model(
            input_ids=encoder_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=decoder_prev_ids
        )
        output_predited_logis = output[0]
        expected_shape = torch.Size((1, 14, 250012))
        self.assertEqual(output_predited_logis.shape, expected_shape)
        # compare the actual values for a slice.
        expected_slice = torch.tensor(
            [[[-8.8815, -9.2996, -4.4506], [-6.7202, -7.8944, -0.9402], [-8.6890, -7.4528, -1.9437]]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(output_predited_logis[:, :3, :3], expected_slice, atol=1e-4))

    @slow
    def test_xprophetnet_ntg_inference(self):
        model = XLMProphetNetForConditionalGeneration.from_pretrained(
            "microsoft/xprophetnet-large-wiki100-cased-xglue-ntg"
        )
        model.to(torch_device)
        model.config.max_length = 512

        tokenizer = XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased-xglue-ntg")

        EN_SENTENCE = "Microsoft Corporation intends to officially end free support for the Windows 7 operating system after January 14, 2020, according to the official portal of the organization. From that day, users of this system will not be able to receive security updates, which could make their computers vulnerable to cyber attacks."
        RU_SENTENCE = "орпорация Microsoft намерена официально прекратить бесплатную поддержку операционной системы Windows 7 после 14 января 2020 года, сообщается на официальном портале организации . С указанного дня пользователи этой системы не смогут получать обновления безопасности, из-за чего их компьютеры могут стать уязвимыми к кибератакам."
        ZH_SENTENCE = (
            "根据该组织的官方门户网站,微软公司打算在2020年1月14日之后正式终止对Windows 7操作系统的免费支持。从那时起,该系统的用户将无法接收安全更新,这可能会使他们的计算机容易受到网络攻击。"
        )

        input_ids = tokenizer(
            [EN_SENTENCE, RU_SENTENCE, ZH_SENTENCE], padding=True, max_length=255, return_tensors="pt"
        ).input_ids
        input_ids = input_ids.to(torch_device)

        summary_ids = model.generate(
            input_ids, num_beams=10, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True
        )
        generated_titles = [tokenizer.decode(g, skip_special_tokens=True) for g in summary_ids]
        EXPECTED_TITLE_EN = "Microsoft to end Windows 7 free support after January 14, 2020"
        EXPECTED_TITLE_RU = "Microsoft намерена прекратить бесплатную поддержку Windows 7 после 14 января 2020 года"
        EXPECTED_TITLE_ZH = "微软打算终止对Windows 7操作系统的免费支持"
        self.assertListEqual(
            [EXPECTED_TITLE_EN, EXPECTED_TITLE_RU, EXPECTED_TITLE_ZH],
            generated_titles,
        )

        summary_ids_beam1 = model.generate(
            input_ids, num_beams=1, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True
        )
        generated_titles_beam1_tok = [
            tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True) for g in summary_ids_beam1
        ]
        EXPECTED_TITLE_EN_BEAM1_TOK = "▁Microsoft ▁to ▁end ▁free ▁support ▁for ▁Windows ▁7".split(" ")
        EXPECTED_TITLE_RU_BEAM1_TOK = "▁Microsoft ▁намерен а ▁прекрати ть ▁бес плат ную ▁поддержку ▁Windows ▁7 ▁после ▁14 ▁января ▁2020 ▁года".split(
            " "
        )
        EXPECTED_TITLE_ZH_BEAM1_TOK = "微软 公司 打算 终止 对 Windows ▁7 操作 系统的 免费 支持".split(" ")
        self.assertListEqual(
            [EXPECTED_TITLE_EN_BEAM1_TOK, EXPECTED_TITLE_RU_BEAM1_TOK, EXPECTED_TITLE_ZH_BEAM1_TOK],
            generated_titles_beam1_tok,
        )