test_modeling_deberta.py 10 KB
Newer Older
Pengcheng He's avatar
Pengcheng He committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2018 Microsoft Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import random
import unittest

import numpy as np

from transformers import is_torch_available
23
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
Pengcheng He's avatar
Pengcheng He committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

    from transformers import (  # XxxForMaskedLM,; XxxForQuestionAnswering,; XxxForTokenClassification,
        DebertaConfig,
        DebertaForSequenceClassification,
        DebertaModel,
    )
    from transformers.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST


@require_torch
class DebertaModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            DebertaModel,
            DebertaForSequenceClassification,
        )  # , DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForTokenClassification)
        if is_torch_available()
        else ()
    )

    test_torchscript = False
    test_pruning = False
    test_head_masking = False
    is_encoder_decoder = False

    class DebertaModelTester(object):
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            relative_attention=False,
            position_biased_input=True,
            pos_att_type="None",
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.relative_attention = relative_attention
            self.position_biased_input = position_biased_input
            self.pos_att_type = pos_att_type
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = DebertaConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range,
                relative_attention=self.relative_attention,
                position_biased_input=self.position_biased_input,
                pos_att_type=self.pos_att_type,
            )

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
151
            self.parent.assertListEqual(list(result.loss.size()), [])
Pengcheng He's avatar
Pengcheng He committed
152
153
154
155
156
157
158
159
160
161
162
163

        def create_and_check_deberta_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = DebertaModel(config=config)
            model.to(torch_device)
            model.eval()
            sequence_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0]
            sequence_output = model(input_ids, token_type_ids=token_type_ids)[0]
            sequence_output = model(input_ids)[0]

            self.parent.assertListEqual(
164
                list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]
Pengcheng He's avatar
Pengcheng He committed
165
166
167
168
169
170
171
172
173
            )

        def create_and_check_deberta_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = DebertaForSequenceClassification(config)
            model.to(torch_device)
            model.eval()
174
175
            result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
            self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels])
Pengcheng He's avatar
Pengcheng He committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
            self.check_loss_output(result)

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
            return config, inputs_dict

    def setUp(self):
        self.model_tester = DebertaModelTest.DebertaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DebertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_deberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_model(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_sequence_classification(*config_and_inputs)

    @unittest.skip(reason="Model not available yet")
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_masked_lm(*config_and_inputs)

    @unittest.skip(reason="Model not available yet")
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_question_answering(*config_and_inputs)

    @unittest.skip(reason="Model not available yet")
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_token_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DebertaModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


@require_torch
230
231
@require_sentencepiece
@require_tokenizers
Pengcheng He's avatar
Pengcheng He committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
class DebertaModelIntegrationTest(unittest.TestCase):
    @unittest.skip(reason="Model not available yet")
    def test_inference_masked_lm(self):
        pass

    @slow
    def test_inference_no_head(self):
        random.seed(0)
        np.random.seed(0)
        torch.manual_seed(0)
        torch.cuda.manual_seed_all(0)
        model = DebertaModel.from_pretrained("microsoft/deberta-base")

        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = torch.tensor(
            [[[-0.0218, -0.6641, -0.3665], [-0.3907, -0.4716, -0.6640], [0.7461, 1.2570, -0.9063]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4), f"{output[:, :3, :3]}")