run_squad.py 33.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19


import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import glob
21
22
23
import logging
import os
import random
24
import timeit
Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
27
import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
29
from torch.utils.data.distributed import DistributedSampler
30
from tqdm import tqdm, trange
31

32
import transformers
33
from transformers import (
34
    MODEL_FOR_QUESTION_ANSWERING_MAPPING,
35
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
36
    AdamW,
37
38
39
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
40
41
    get_linear_schedule_with_warmup,
    squad_convert_examples_to_features,
42
)
Aymeric Augustin's avatar
Aymeric Augustin committed
43
44
45
46
47
48
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor
49
from transformers.trainer_utils import is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
50
51
52
53


try:
    from torch.utils.tensorboard import SummaryWriter
54
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
55
    from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
56

57
58
59

logger = logging.getLogger(__name__)

60
61
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
thomwolf's avatar
thomwolf committed
62

63

thomwolf's avatar
thomwolf committed
64
65
66
67
68
69
70
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

71

72
73
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
74

75

76
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
77
78
79
80
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

81
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
82
83
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
84
85

    if args.max_steps > 0:
86
        t_total = args.max_steps
87
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
88
    else:
89
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
90

91
    # Prepare optimizer and schedule (linear warmup and decay)
92
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
93
    optimizer_grouped_parameters = [
94
95
96
97
98
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
LysandreJik's avatar
Cleanup  
LysandreJik committed
99
    ]
100
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
101
    scheduler = get_linear_schedule_with_warmup(
102
103
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
104
105

    # Check if saved optimizer or scheduler states exist
106
107
108
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
109
        # Load in optimizer and scheduler states
110
111
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
LysandreJik's avatar
Cleanup  
LysandreJik committed
112

thomwolf's avatar
thomwolf committed
113
114
115
116
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
117
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
118

119
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
120

121
122
123
124
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
125
126
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
127
128
129
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
130

thomwolf's avatar
thomwolf committed
131
132
133
134
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
135
136
137
138
139
140
141
142
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
143
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
144

Lysandre's avatar
Lysandre committed
145
    global_step = 1
146
147
148
149
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
150
151
152
153
154
155
156
157
158
159
160
161
162
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
163

thomwolf's avatar
thomwolf committed
164
    tr_loss, logging_loss = 0.0, 0.0
165
    model.zero_grad()
166
167
168
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
169
    # Added here for reproductibility
170
171
    set_seed(args)

172
    for _ in train_iterator:
173
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
174
        for step, batch in enumerate(epoch_iterator):
175
176
177
178
179
180

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

181
            model.train()
thomwolf's avatar
thomwolf committed
182
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
183
184

            inputs = {
185
186
                "input_ids": batch[0],
                "attention_mask": batch[1],
187
                "token_type_ids": batch[2],
188
189
                "start_positions": batch[3],
                "end_positions": batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
190
191
            }

192
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]:
193
194
                del inputs["token_type_ids"]

195
196
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
197
                if args.version_2_with_negative:
198
                    inputs.update({"is_impossible": batch[7]})
199
200
201
202
203
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )

Peiqin Lin's avatar
typos  
Peiqin Lin committed
204
            outputs = model(**inputs)
205
206
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
207

208
            if args.n_gpu > 1:
209
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
210
211
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
212

213
214
215
216
217
218
219
220
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
221
                if args.fp16:
222
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
223
                else:
224
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
225

226
                optimizer.step()
227
                scheduler.step()  # Update learning rate schedule
228
229
230
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
231
                # Log metrics
232
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
233
234
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
235
236
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
237
238
239
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
240
241
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
242
                # Save model checkpoint
243
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
244
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
245
                    # Take care of distributed/parallel training
246
                    model_to_save = model.module if hasattr(model, "module") else model
247
                    model_to_save.save_pretrained(output_dir)
248
249
                    tokenizer.save_pretrained(output_dir)

250
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
251
252
                    logger.info("Saving model checkpoint to %s", output_dir)

253
254
255
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
256

257
258
259
260
261
262
263
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
264
265
266
    if args.local_rank in [-1, 0]:
        tb_writer.close()

267
268
269
270
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
271
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
272
273
274
275
276

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
277

278
    # Note that DistributedSampler samples randomly
279
    eval_sampler = SequentialSampler(dataset)
280
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
281

ronakice's avatar
ronakice committed
282
    # multi-gpu evaluate
283
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
284
285
        model = torch.nn.DataParallel(model)

286
287
288
289
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
290

291
    all_results = []
292
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
293

294
295
296
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
297

298
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
299
            inputs = {
300
301
                "input_ids": batch[0],
                "attention_mask": batch[1],
302
                "token_type_ids": batch[2],
LysandreJik's avatar
LysandreJik committed
303
            }
304

305
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]:
306
307
                del inputs["token_type_ids"]

308
            feature_indices = batch[3]
309

LysandreJik's avatar
Cleanup  
LysandreJik committed
310
            # XLNet and XLM use more arguments for their predictions
311
312
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
313
314
315
316
317
                # for lang_id-sensitive xlm models
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )
318
319
            outputs = model(**inputs)

320
321
        for i, feature_index in enumerate(feature_indices):
            eval_feature = features[feature_index.item()]
322
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
323

324
            output = [to_list(output[i]) for output in outputs.to_tuple()]
LysandreJik's avatar
LysandreJik committed
325

LysandreJik's avatar
Cleanup  
LysandreJik committed
326
327
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
328
329
330
331
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
332
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
333
334
335
                cls_logits = output[4]

                result = SquadResult(
336
337
338
                    unique_id,
                    start_logits,
                    end_logits,
339
340
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
341
                    cls_logits=cls_logits,
LysandreJik's avatar
LysandreJik committed
342
343
344
345
                )

            else:
                start_logits, end_logits = output
346
                result = SquadResult(unique_id, start_logits, end_logits)
LysandreJik's avatar
LysandreJik committed
347

348
            all_results.append(result)
349

350
    evalTime = timeit.default_timer() - start_time
351
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
352

thomwolf's avatar
thomwolf committed
353
    # Compute predictions
354
355
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
356

357
    if args.version_2_with_negative:
358
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
359
360
    else:
        output_null_log_odds_file = None
361

LysandreJik's avatar
Cleanup  
LysandreJik committed
362
    # XLNet and XLM use a more complex post-processing procedure
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    if args.model_type in ["xlnet", "xlm"]:
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

        predictions = compute_predictions_log_probs(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            start_n_top,
            end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
382
    else:
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        predictions = compute_predictions_logits(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
            tokenizer,
        )
398

LysandreJik's avatar
Cleanup  
LysandreJik committed
399
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
400
    results = squad_evaluate(examples, predictions)
401
402
    return results

403

404
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
405
    if args.local_rank not in [-1, 0] and not evaluate:
406
407
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
408

409
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
410
    input_dir = args.data_dir if args.data_dir else "."
411
412
413
414
415
416
417
    cached_features_file = os.path.join(
        input_dir,
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
LysandreJik's avatar
Cleanup  
LysandreJik committed
418
419
420
    )

    # Init features and dataset from cache if it exists
421
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
422
        logger.info("Loading features from cached file %s", cached_features_file)
423
        features_and_dataset = torch.load(cached_features_file)
424
425
426
427
428
        features, dataset, examples = (
            features_and_dataset["features"],
            features_and_dataset["dataset"],
            features_and_dataset["examples"],
        )
thomwolf's avatar
thomwolf committed
429
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
430
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
431

432
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
433
434
435
            try:
                import tensorflow_datasets as tfds
            except ImportError:
436
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
437
438

            if args.version_2_with_negative:
439
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
440
441

            tfds_examples = tfds.load("squad")
442
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
443
444
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
445
446
447
448
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
449

450
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
451
452
453
454
455
456
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
457
            return_dataset="pt",
erenup's avatar
erenup committed
458
            threads=args.threads,
Lysandre's avatar
Lysandre committed
459
460
        )

thomwolf's avatar
thomwolf committed
461
        if args.local_rank in [-1, 0]:
462
            logger.info("Saving features into cached file %s", cached_features_file)
463
            torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
thomwolf's avatar
thomwolf committed
464

VictorSanh's avatar
VictorSanh committed
465
    if args.local_rank == 0 and not evaluate:
466
467
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
468

469
470
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
471
472
    return dataset

473
474
475
476

def main():
    parser = argparse.ArgumentParser()

477
    # Required parameters
478
479
480
481
482
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
483
        help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
484
485
486
487
488
489
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
490
        help="Path to pretrained model or model identifier from huggingface.co/models",
491
492
493
494
495
496
497
498
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
499

500
    # Other parameters
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
573
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )
622
623
624
625
626
627
    parser.add_argument(
        "--lang_id",
        default=0,
        type=int,
        help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
    )
628

629
630
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")

    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
662
663
    args = parser.parse_args()

664
665
666
667
668
669
670
    if args.doc_stride >= args.max_seq_length - args.max_query_length:
        logger.warning(
            "WARNING - You've set a doc stride which may be superior to the document length in some "
            "examples. This could result in errors when building features from the examples. Please reduce the doc "
            "stride or increase the maximum length to ensure the features are correctly built."
        )

671
672
673
674
675
676
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
677
        raise ValueError(
678
679
680
681
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
682

683
    # Setup distant debugging if needed
684
685
686
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
687

688
        print("Waiting for debugger attach")
689
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
690
691
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
692
    # Setup CUDA, GPU & distributed training
693
    if args.local_rank == -1 or args.no_cuda:
694
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
695
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
696
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
697
698
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
699
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
700
701
        args.n_gpu = 1
    args.device = device
702

thomwolf's avatar
thomwolf committed
703
    # Setup logging
704
705
706
707
708
709
710
711
712
713
714
715
716
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
717
718
719
720
721
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
722
723
    # Set seed
    set_seed(args)
724

thomwolf's avatar
thomwolf committed
725
    # Load pretrained model and tokenizer
726
    if args.local_rank not in [-1, 0]:
727
728
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
729

730
    args.model_type = args.model_type.lower()
731
    config = AutoConfig.from_pretrained(
732
733
734
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
735
    tokenizer = AutoTokenizer.from_pretrained(
736
737
738
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
739
        use_fast=False,  # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling
740
    )
741
    model = AutoModelForQuestionAnswering.from_pretrained(
742
743
744
745
746
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
747
748

    if args.local_rank == 0:
749
750
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
751

thomwolf's avatar
thomwolf committed
752
    model.to(args.device)
753

754
755
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
756
757
758
759
760
761
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
762
763

            apex.amp.register_half_function(torch, "einsum")
Simon Layton's avatar
Simon Layton committed
764
        except ImportError:
765
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
766

thomwolf's avatar
thomwolf committed
767
    # Training
768
    if args.do_train:
769
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
770
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
771
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
772

thomwolf's avatar
thomwolf committed
773
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
774
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
775
776
777
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
778
        # Take care of distributed/parallel training
779
        model_to_save = model.module if hasattr(model, "module") else model
780
781
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
782
783

        # Good practice: save your training arguments together with the trained model
784
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
785

786
        # Load a trained model and vocabulary that you have fine-tuned
787
        model = AutoModelForQuestionAnswering.from_pretrained(args.output_dir)  # , force_download=True)
788
789
790
791

        # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling
        # So we use use_fast=False here for now until Fast-tokenizer-compatible-examples are out
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case, use_fast=False)
792
793
        model.to(args.device)

thomwolf's avatar
thomwolf committed
794
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
795
796
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
797
798
799
800
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
801
802
803
804
                checkpoints = list(
                    os.path.dirname(c)
                    for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
805

806
807
808
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
809

810
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
811

812
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
813
            # Reload the model
814
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
815
            model = AutoModelForQuestionAnswering.from_pretrained(checkpoint)  # , force_download=True)
816
            model.to(args.device)
thomwolf's avatar
thomwolf committed
817
818

            # Evaluate
819
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
820

821
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
822
            results.update(result)
thomwolf's avatar
thomwolf committed
823

824
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
825

826
    return results
827
828
829
830


if __name__ == "__main__":
    main()