t5.rst 6.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
T5
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
-----------------------------------------------------------------------------------------------------------------------

**DISCLAIMER:** This model is still a work in progress, if you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__.
Patrick von Platen's avatar
Patrick von Platen committed
6
7

Overview
Sylvain Gugger's avatar
Sylvain Gugger committed
8
9
10
11
12
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The T5 model was presented in `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
<https://arxiv.org/pdf/1910.10683.pdf>`_ by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
Sylvain Gugger's avatar
Sylvain Gugger committed
13

Sylvain Gugger's avatar
Sylvain Gugger committed
14
The abstract from the paper is the following:
Patrick von Platen's avatar
Patrick von Platen committed
15

Sylvain Gugger's avatar
Sylvain Gugger committed
16
17
18
19
20
21
22
23
24
*Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream
task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning
has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of
transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a
text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer
approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration
with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering
summarization, question answering, text classification, and more. To facilitate future work on transfer learning for
NLP, we release our dataset, pre-trained models, and code.*
Patrick von Platen's avatar
Patrick von Platen committed
25

Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
Tips:

Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
30
31
- T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which
  each task is converted into a text-to-text format. T5 works well on a variety of tasks out-of-the-box by prepending a
  different prefix to the input corresponding to each task, e.g., for translation: *translate English to German: ...*,
  for summarization: *summarize: ...*.
Sylvain Gugger's avatar
Sylvain Gugger committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
  For more information about which prefix to use, it is easiest to look into Appendix D of the `paper
Sylvain Gugger's avatar
Sylvain Gugger committed
34
35
36
37
  <https://arxiv.org/pdf/1910.10683.pdf>`__. - For sequence-to-sequence generation, it is recommended to use
  :obj:`T5ForConditionalGeneration.generate()``. This method takes care of feeding the encoded input via
  cross-attention layers to the decoder and auto-regressively generates the decoder output. - T5 uses relative scalar
  embeddings. Encoder input padding can be done on the left and on the right.
Sylvain Gugger's avatar
Sylvain Gugger committed
38

Sylvain Gugger's avatar
Sylvain Gugger committed
39
The original code can be found `here <https://github.com/google-research/text-to-text-transfer-transformer>`__.
Patrick von Platen's avatar
Patrick von Platen committed
40

41
Training
Sylvain Gugger's avatar
Sylvain Gugger committed
42
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylvain Gugger's avatar
Sylvain Gugger committed
43

Sylvain Gugger's avatar
Sylvain Gugger committed
44
45
46
47
48
49
T5 is an encoder-decoder model and converts all NLP problems into a text-to-text format. It is trained using teacher
forcing. This means that for training we always need an input sequence and a target sequence. The input sequence is fed
to the model using :obj:`input_ids``. The target sequence is shifted to the right, i.e., prepended by a start-sequence
token and fed to the decoder using the :obj:`decoder_input_ids`. In teacher-forcing style, the target sequence is then
appended by the EOS token and corresponds to the :obj:`labels`. The PAD token is hereby used as the start-sequence
token. T5 can be trained / fine-tuned both in a supervised and unsupervised fashion.
50
51

- Unsupervised denoising training
Lorenzo Ampil's avatar
Lorenzo Ampil committed
52

Sylvain Gugger's avatar
Sylvain Gugger committed
53
54
55
  In this setup spans of the input sequence are masked by so-called sentinel tokens (*a.k.a* unique mask tokens) and
  the output sequence is formed as a concatenation of the same sentinel tokens and the *real* masked tokens. Each
  sentinel token represents a unique mask token for this sentence and should start with :obj:`<extra_id_0>`,
Sylvain Gugger's avatar
Sylvain Gugger committed
56
57
  :obj:`<extra_id_1>`, ... up to :obj:`<extra_id_99>`. As a default, 100 sentinel tokens are available in
  :class:`~transformers.T5Tokenizer`.
Sylvain Gugger's avatar
Sylvain Gugger committed
58

Sylvain Gugger's avatar
Sylvain Gugger committed
59
  For instance, the sentence "The cute dog walks in the park" with the masks put on "cute dog" and "the" should be
Sylvain Gugger's avatar
Sylvain Gugger committed
60
  processed as follows:
61

Sylvain Gugger's avatar
Sylvain Gugger committed
62
.. code-block::
63

64
65
  input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
  labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids
66
  # the forward function automatically creates the correct decoder_input_ids
67
  loss = model(input_ids=input_ids, labels=labels).loss
68
69

- Supervised training
Lorenzo Ampil's avatar
Lorenzo Ampil committed
70

Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
  In this setup the input sequence and output sequence are standard sequence-to-sequence input output mapping. In
  translation, for instance with the input sequence "The house is wonderful." and output sequence "Das Haus ist
Sylvain Gugger's avatar
Sylvain Gugger committed
73
  wunderbar.", the sentences should be processed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
74

Sylvain Gugger's avatar
Sylvain Gugger committed
75
.. code-block::
76

77
78
  input_ids = tokenizer('translate English to German: The house is wonderful.', return_tensors='pt').input_ids
  labels = tokenizer('Das Haus ist wunderbar.', return_tensors='pt').input_ids
79
  # the forward function automatically creates the correct decoder_input_ids
80
  loss = model(input_ids=input_ids, labels=labels).loss
81

Patrick von Platen's avatar
Patrick von Platen committed
82
83

T5Config
Sylvain Gugger's avatar
Sylvain Gugger committed
84
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90

.. autoclass:: transformers.T5Config
    :members:


T5Tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
91
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94

.. autoclass:: transformers.T5Tokenizer
    :members: build_inputs_with_special_tokens, get_special_tokens_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
95
        create_token_type_ids_from_sequences, prepare_seq2seq_batch, save_vocabulary
Patrick von Platen's avatar
Patrick von Platen committed
96
97
98


T5Model
Sylvain Gugger's avatar
Sylvain Gugger committed
99
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
100
101

.. autoclass:: transformers.T5Model
Sylvain Gugger's avatar
Sylvain Gugger committed
102
    :members: forward
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105


T5ForConditionalGeneration
Sylvain Gugger's avatar
Sylvain Gugger committed
106
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
107
108

.. autoclass:: transformers.T5ForConditionalGeneration
Sylvain Gugger's avatar
Sylvain Gugger committed
109
    :members: forward
Patrick von Platen's avatar
Patrick von Platen committed
110
111
112


TFT5Model
Sylvain Gugger's avatar
Sylvain Gugger committed
113
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
114
115

.. autoclass:: transformers.TFT5Model
Sylvain Gugger's avatar
Sylvain Gugger committed
116
    :members: call
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119


TFT5ForConditionalGeneration
Sylvain Gugger's avatar
Sylvain Gugger committed
120
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
121
122

.. autoclass:: transformers.TFT5ForConditionalGeneration
Sylvain Gugger's avatar
Sylvain Gugger committed
123
    :members: call