"test/git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "73eb67c087896aba8862e37c0bb3135fe45e43a6"
run_ner.py 30.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Matt Maybeno's avatar
Matt Maybeno committed
16
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
17
18
19
20
21
22
23
24
25
26


import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
27
from seqeval.metrics import f1_score, precision_score, recall_score
28
29
30
31
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
Aymeric Augustin's avatar
Aymeric Augustin committed
32
33
34
35

from transformers import (
    WEIGHTS_NAME,
    AdamW,
36
37
38
    AlbertConfig,
    AlbertForTokenClassification,
    AlbertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    BertConfig,
    BertForTokenClassification,
    BertTokenizer,
    CamembertConfig,
    CamembertForTokenClassification,
    CamembertTokenizer,
    DistilBertConfig,
    DistilBertForTokenClassification,
    DistilBertTokenizer,
    RobertaConfig,
    RobertaForTokenClassification,
    RobertaTokenizer,
    XLMRobertaConfig,
    XLMRobertaForTokenClassification,
    XLMRobertaTokenizer,
    get_linear_schedule_with_warmup,
)
56
57
58
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file


Aymeric Augustin's avatar
Aymeric Augustin committed
59
60
61
62
63
64
try:
    from torch.utils.tensorboard import SummaryWriter
except ImportError:
    from tensorboardX import SummaryWriter


65
66
67
logger = logging.getLogger(__name__)

ALL_MODELS = sum(
68
69
70
71
72
73
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, RobertaConfig, DistilBertConfig, CamembertConfig, XLMRobertaConfig)
    ),
    (),
)
74
75

MODEL_CLASSES = {
76
    "albert": (AlbertConfig, AlbertForTokenClassification, AlbertTokenizer),
77
    "bert": (BertConfig, BertForTokenClassification, BertTokenizer),
78
    "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer),
79
80
    "distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer),
    "camembert": (CamembertConfig, CamembertForTokenClassification, CamembertTokenizer),
81
    "xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer),
82
83
}

84
85
TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"]

86
87
88
89
90
91
92
93
94

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


95
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
113
114
115
116
117
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
118
119
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
120
121
122
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
123
124

    # Check if saved optimizer or scheduler states exist
125
126
127
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
128
        # Load in optimizer and scheduler states
129
130
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
131

132
133
134
135
136
137
138
139
140
141
142
143
144
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
145
146
147
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
148
149
150
151
152
153

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
154
155
156
157
158
159
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
160
161
162
163
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
164
165
166
167
168
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
169
170
171
172
        try:
            global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        except ValueError:
            global_step = 0
173
174
175
176
177
178
179
180
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

181
182
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
183
184
185
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
186
    set_seed(args)  # Added here for reproductibility
187
188
189
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
190
191
192
193
194
195

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

196
197
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
198
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
199
            if args.model_type != "distilbert":
200
201
202
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM and RoBERTa don"t use segment_ids
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
220
221
222
223
224
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

225
226
227
228
229
230
231
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
232
233
234
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
235
                        results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
236
237
238
239
240
241
242
243
244
245
246
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
247
248
249
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
250
                    model_to_save.save_pretrained(output_dir)
251
252
                    tokenizer.save_pretrained(output_dir)

253
254
255
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

256
257
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
258
259
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

260
261
262
263
264
265
266
267
268
269
270
271
272
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


273
274
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""):
    eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode)
275
276
277
278
279
280

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
281
282
283
284
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

285
286
287
288
289
290
291
292
293
294
295
296
297
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
298
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
299
            if args.model_type != "distilbert":
300
301
302
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM and RoBERTa don"t use segment_ids
303
304
305
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]

306
307
308
            if args.n_gpu > 1:
                tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu parallel evaluating

309
310
311
312
313
314
315
316
317
318
319
320
            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = inputs["labels"].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

321
    label_map = {i: label for i, label in enumerate(labels)}
322
323
324
325
326
327
328
329
330
331
332
333
334
335

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(label_map[out_label_ids[i][j]])
                preds_list[i].append(label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
336
        "f1": f1_score(out_label_list, preds_list),
337
338
339
340
341
342
    }

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

343
    return results, preds_list
344
345


346
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode):
347
348
349
350
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
351
352
353
354
355
356
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}".format(
            mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length)
        ),
    )
357
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
358
359
360
361
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
362
        examples = read_examples_from_file(args.data_dir, mode)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        features = convert_examples_to_features(
            examples,
            labels,
            args.max_seq_length,
            tokenizer,
            cls_token_at_end=bool(args.model_type in ["xlnet"]),
            # xlnet has a cls token at the end
            cls_token=tokenizer.cls_token,
            cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
            sep_token=tokenizer.sep_token,
            sep_token_extra=bool(args.model_type in ["roberta"]),
            # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
            pad_on_left=bool(args.model_type in ["xlnet"]),
            # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
            pad_token_label_id=pad_token_label_id,
        )
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset


def main():
    parser = argparse.ArgumentParser()

401
    # Required parameters
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
430

431
    # Other parameters
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    parser.add_argument(
        "--labels",
        default="",
        type=str,
        help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action="store_true",
        help="Whether to run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    parser.add_argument(
        "--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents."
    )

    parser.add_argument(
        "--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents."
    )

    parser.add_argument(
        "--nouse_fast",
        action="store_const",
        dest="use_fast",
        const=False,
        help="Set this flag to not use fast tokenization.",
    )

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

513
514
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
542
543
544
545
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
    args = parser.parse_args()

546
547
548
549
550
551
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
552
553
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
554
555
556
                args.output_dir
            )
        )
557
558
559
560
561

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Setup logging
579
580
581
582
583
584
585
586
587
588
589
590
591
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
592
593
594
595
596

    # Set seed
    set_seed(args)

    # Prepare CONLL-2003 task
597
598
    labels = get_labels(args.labels)
    num_labels = len(labels)
599
600
601
602
603
604
605
606
607
    # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
    pad_token_label_id = CrossEntropyLoss().ignore_index

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
608
609
610
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
611
612
        id2label={str(i): label for i, label in enumerate(labels)},
        label2id={label: i for i, label in enumerate(labels)},
613
614
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
615
    tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS}
616
    logger.info("Tokenizer arguments: %s", tokenizer_args)
617
618
619
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
Martin Malmsten's avatar
Added ,  
Martin Malmsten committed
620
        **tokenizer_args,
621
622
623
624
625
626
627
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
628
629
630
631
632
633
634
635
636
637

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
638
        train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train")
639
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id)
640
641
642
643
644
645
646
647
648
649
650
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
651
652
653
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
654
655
656
657
658
659
660
661
662
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
663
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, **tokenizer_args)
664
665
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
666
667
668
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
669
670
671
672
673
674
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
675
            result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step)
676
677
678
679
680
681
682
683
            if global_step:
                result = {"{}_{}".format(global_step, k): v for k, v in result.items()}
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

684
    if args.do_predict and args.local_rank in [-1, 0]:
685
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, **tokenizer_args)
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
        model = model_class.from_pretrained(args.output_dir)
        model.to(args.device)
        result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="test")
        # Save results
        output_test_results_file = os.path.join(args.output_dir, "test_results.txt")
        with open(output_test_results_file, "w") as writer:
            for key in sorted(result.keys()):
                writer.write("{} = {}\n".format(key, str(result[key])))
        # Save predictions
        output_test_predictions_file = os.path.join(args.output_dir, "test_predictions.txt")
        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(args.data_dir, "test.txt"), "r") as f:
                example_id = 0
                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)
                        if not predictions[example_id]:
                            example_id += 1
                    elif predictions[example_id]:
                        output_line = line.split()[0] + " " + predictions[example_id].pop(0) + "\n"
                        writer.write(output_line)
                    else:
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

710
711
712
713
714
    return results


if __name__ == "__main__":
    main()