test_image_utils.py 30.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import codecs
17
18
import os
import tempfile
19
import unittest
20
21
from io import BytesIO
from typing import Optional
22
23

import numpy as np
24
import pytest
25
26
import requests
from huggingface_hub.file_download import hf_hub_url, http_get
27
from requests import ConnectTimeout, ReadTimeout
28

29
from tests.pipelines.test_pipelines_document_question_answering import INVOICE_URL
30
from transformers import is_torch_available, is_vision_available
31
from transformers.image_utils import ChannelDimension, get_channel_dimension_axis, make_list_of_images
amyeroberts's avatar
amyeroberts committed
32
from transformers.testing_utils import is_flaky, require_torch, require_vision
33
34
35
36
37
38
39
40
41


if is_torch_available():
    import torch

if is_vision_available():
    import PIL.Image

    from transformers import ImageFeatureExtractionMixin
42
    from transformers.image_utils import get_image_size, infer_channel_dimension_format, load_image
43
44


45
46
47
48
49
def get_image_from_hub_dataset(dataset_id: str, filename: str, revision: Optional[str] = None) -> "PIL.Image.Image":
    url = hf_hub_url(dataset_id, filename, repo_type="dataset", revision=revision)
    return PIL.Image.open(BytesIO(requests.get(url).content))


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def get_random_image(height, width):
    random_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
    return PIL.Image.fromarray(random_array)


@require_vision
class ImageFeatureExtractionTester(unittest.TestCase):
    def test_conversion_image_to_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)

        # Conversion with defaults (rescale + channel first)
        array1 = feature_extractor.to_numpy_array(image)
        self.assertTrue(array1.dtype, np.float32)
        self.assertEqual(array1.shape, (3, 16, 32))

        # Conversion with rescale and not channel first
        array2 = feature_extractor.to_numpy_array(image, channel_first=False)
        self.assertTrue(array2.dtype, np.float32)
        self.assertEqual(array2.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array1, array2.transpose(2, 0, 1)))

        # Conversion with no rescale and channel first
        array3 = feature_extractor.to_numpy_array(image, rescale=False)
        self.assertTrue(array3.dtype, np.uint8)
        self.assertEqual(array3.shape, (3, 16, 32))
76
        self.assertTrue(np.array_equal(array1, array3.astype(np.float32) * (1 / 255.0)))
77
78
79
80
81

        # Conversion with no rescale and not channel first
        array4 = feature_extractor.to_numpy_array(image, rescale=False, channel_first=False)
        self.assertTrue(array4.dtype, np.uint8)
        self.assertEqual(array4.shape, (16, 32, 3))
82
        self.assertTrue(np.array_equal(array2, array4.astype(np.float32) * (1 / 255.0)))
83
84
85
86
87
88
89
90
91

    def test_conversion_array_to_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)

        # By default, rescale (for an array of ints) and channel permute
        array1 = feature_extractor.to_numpy_array(array)
        self.assertTrue(array1.dtype, np.float32)
        self.assertEqual(array1.shape, (3, 16, 32))
92
        self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))
93
94
95
96
97

        # Same with no permute
        array2 = feature_extractor.to_numpy_array(array, channel_first=False)
        self.assertTrue(array2.dtype, np.float32)
        self.assertEqual(array2.shape, (16, 32, 3))
98
        self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

        # Force rescale to False
        array3 = feature_extractor.to_numpy_array(array, rescale=False)
        self.assertTrue(array3.dtype, np.uint8)
        self.assertEqual(array3.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))

        # Force rescale to False and no channel permute
        array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
        self.assertTrue(array4.dtype, np.uint8)
        self.assertEqual(array4.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array4, array))

        # Now test the default rescale for a float array (defaults to False)
        array5 = feature_extractor.to_numpy_array(array2)
        self.assertTrue(array5.dtype, np.float32)
        self.assertEqual(array5.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array5, array1))

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def test_make_list_of_images_numpy(self):
        # Test a single image is converted to a list of 1 image
        images = np.random.randint(0, 256, (16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 1)
        self.assertTrue(np.array_equal(images_list[0], images))
        self.assertIsInstance(images_list, list)

        # Test a batch of images is converted to a list of images
        images = np.random.randint(0, 256, (4, 16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

        # Test a list of images is not modified
        images = [np.random.randint(0, 256, (16, 32, 3)) for _ in range(4)]
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

        # Test batched masks with no channel dimension are converted to a list of masks
        masks = np.random.randint(0, 2, (4, 16, 32))
        masks_list = make_list_of_images(masks, expected_ndims=2)
        self.assertEqual(len(masks_list), 4)
        self.assertTrue(np.array_equal(masks_list[0], masks[0]))
        self.assertIsInstance(masks_list, list)

    @require_torch
    def test_make_list_of_images_torch(self):
        # Test a single image is converted to a list of 1 image
        images = torch.randint(0, 256, (16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 1)
        self.assertTrue(np.array_equal(images_list[0], images))
        self.assertIsInstance(images_list, list)

        # Test a batch of images is converted to a list of images
        images = torch.randint(0, 256, (4, 16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

        # Test a list of images is left unchanged
        images = [torch.randint(0, 256, (16, 32, 3)) for _ in range(4)]
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

170
171
172
173
174
175
176
177
178
179
    @require_torch
    def test_conversion_torch_to_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.randint(0, 256, (16, 32, 3))
        array = tensor.numpy()

        # By default, rescale (for a tensor of ints) and channel permute
        array1 = feature_extractor.to_numpy_array(array)
        self.assertTrue(array1.dtype, np.float32)
        self.assertEqual(array1.shape, (3, 16, 32))
180
        self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))
181
182
183
184
185

        # Same with no permute
        array2 = feature_extractor.to_numpy_array(array, channel_first=False)
        self.assertTrue(array2.dtype, np.float32)
        self.assertEqual(array2.shape, (16, 32, 3))
186
        self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        # Force rescale to False
        array3 = feature_extractor.to_numpy_array(array, rescale=False)
        self.assertTrue(array3.dtype, np.uint8)
        self.assertEqual(array3.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))

        # Force rescale to False and no channel permute
        array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
        self.assertTrue(array4.dtype, np.uint8)
        self.assertEqual(array4.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array4, array))

        # Now test the default rescale for a float tensor (defaults to False)
        array5 = feature_extractor.to_numpy_array(array2)
        self.assertTrue(array5.dtype, np.float32)
        self.assertEqual(array5.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array5, array1))

    def test_conversion_image_to_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)

        # On an image, `to_pil_image1` is a noop.
        image1 = feature_extractor.to_pil_image(image)
        self.assertTrue(isinstance(image, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image), np.array(image1)))

    def test_conversion_array_to_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)

        # By default, no rescale (for an array of ints)
        image1 = feature_extractor.to_pil_image(array)
        self.assertTrue(isinstance(image1, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image1), array))

        # If the array is channel-first, proper reordering of the channels is done.
        image2 = feature_extractor.to_pil_image(array.transpose(2, 0, 1))
        self.assertTrue(isinstance(image2, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image2), array))

        # If the array has floating type, it's rescaled by default.
230
        image3 = feature_extractor.to_pil_image(array.astype(np.float32) * (1 / 255.0))
231
232
233
234
235
236
237
238
239
        self.assertTrue(isinstance(image3, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image3), array))

        # You can override the default to rescale.
        image4 = feature_extractor.to_pil_image(array.astype(np.float32), rescale=False)
        self.assertTrue(isinstance(image4, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image4), array))

        # And with floats + channel first.
240
        image5 = feature_extractor.to_pil_image(array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        self.assertTrue(isinstance(image5, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image5), array))

    @require_torch
    def test_conversion_tensor_to_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.randint(0, 256, (16, 32, 3))
        array = tensor.numpy()

        # By default, no rescale (for a tensor of ints)
        image1 = feature_extractor.to_pil_image(tensor)
        self.assertTrue(isinstance(image1, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image1), array))

        # If the tensor is channel-first, proper reordering of the channels is done.
        image2 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1))
        self.assertTrue(isinstance(image2, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image2), array))

        # If the tensor has floating type, it's rescaled by default.
        image3 = feature_extractor.to_pil_image(tensor.float() / 255.0)
        self.assertTrue(isinstance(image3, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image3), array))

        # You can override the default to rescale.
        image4 = feature_extractor.to_pil_image(tensor.float(), rescale=False)
        self.assertTrue(isinstance(image4, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image4), array))

        # And with floats + channel first.
271
        image5 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1).float() * (1 / 255.0))
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        self.assertTrue(isinstance(image5, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image5), array))

    def test_resize_image_and_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = np.array(image)

        # Size can be an int or a tuple of ints.
        resized_image = feature_extractor.resize(image, 8)
        self.assertTrue(isinstance(resized_image, PIL.Image.Image))
        self.assertEqual(resized_image.size, (8, 8))

        resized_image1 = feature_extractor.resize(image, (8, 16))
        self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
        self.assertEqual(resized_image1.size, (8, 16))

289
        # Passing an array converts it to a PIL Image.
290
291
292
293
294
295
296
297
298
299
        resized_image2 = feature_extractor.resize(array, 8)
        self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
        self.assertEqual(resized_image2.size, (8, 8))
        self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))

        resized_image3 = feature_extractor.resize(image, (8, 16))
        self.assertTrue(isinstance(resized_image3, PIL.Image.Image))
        self.assertEqual(resized_image3.size, (8, 16))
        self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def test_resize_image_and_array_non_default_to_square(self):
        feature_extractor = ImageFeatureExtractionMixin()

        heights_widths = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]

        # single integer or single integer in tuple/list
        sizes = [22, 27, 28, 36, [22], (27,)]

        for (height, width), size in zip(heights_widths, sizes):
            for max_size in (None, 37, 1000):
                image = get_random_image(height, width)
                array = np.array(image)

                size = size[0] if isinstance(size, (list, tuple)) else size
                # Size can be an int or a tuple of ints.
                # If size is an int, smaller edge of the image will be matched to this number.
                # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                if height < width:
                    exp_w, exp_h = (int(size * width / height), size)
                    if max_size is not None and max_size < exp_w:
                        exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
                elif width < height:
                    exp_w, exp_h = (size, int(size * height / width))
                    if max_size is not None and max_size < exp_h:
                        exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
                else:
                    exp_w, exp_h = (size, size)
                    if max_size is not None and max_size < size:
                        exp_w, exp_h = max_size, max_size

                resized_image = feature_extractor.resize(image, size=size, default_to_square=False, max_size=max_size)
                self.assertTrue(isinstance(resized_image, PIL.Image.Image))
                self.assertEqual(resized_image.size, (exp_w, exp_h))

                # Passing an array converts it to a PIL Image.
                resized_image2 = feature_extractor.resize(array, size=size, default_to_square=False, max_size=max_size)
                self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
                self.assertEqual(resized_image2.size, (exp_w, exp_h))
                self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    @require_torch
    def test_resize_tensor(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.randint(0, 256, (16, 32, 3))
        array = tensor.numpy()

        # Size can be an int or a tuple of ints.
        resized_image = feature_extractor.resize(tensor, 8)
        self.assertTrue(isinstance(resized_image, PIL.Image.Image))
        self.assertEqual(resized_image.size, (8, 8))

        resized_image1 = feature_extractor.resize(tensor, (8, 16))
        self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
        self.assertEqual(resized_image1.size, (8, 16))

        # Check we get the same results as with NumPy arrays.
        resized_image2 = feature_extractor.resize(array, 8)
        self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))

        resized_image3 = feature_extractor.resize(array, (8, 16))
        self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))

    def test_normalize_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = np.array(image)
        mean = [0.1, 0.5, 0.9]
        std = [0.2, 0.4, 0.6]

        # PIL Image are converted to NumPy arrays for the normalization
        normalized_image = feature_extractor.normalize(image, mean, std)
        self.assertTrue(isinstance(normalized_image, np.ndarray))
        self.assertEqual(normalized_image.shape, (3, 16, 32))

        # During the conversion rescale and channel first will be applied.
386
        expected = array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)
387
388
389
        np_mean = np.array(mean).astype(np.float32)[:, None, None]
        np_std = np.array(std).astype(np.float32)[:, None, None]
        expected = (expected - np_mean) / np_std
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        self.assertTrue(np.array_equal(normalized_image, expected))

    def test_normalize_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        array = np.random.random((16, 32, 3))
        mean = [0.1, 0.5, 0.9]
        std = [0.2, 0.4, 0.6]

        # mean and std can be passed as lists or NumPy arrays.
        expected = (array - np.array(mean)) / np.array(std)
        normalized_array = feature_extractor.normalize(array, mean, std)
        self.assertTrue(np.array_equal(normalized_array, expected))

        normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
        self.assertTrue(np.array_equal(normalized_array, expected))

        # Normalize will detect automatically if channel first or channel last is used.
        array = np.random.random((3, 16, 32))
        expected = (array - np.array(mean)[:, None, None]) / np.array(std)[:, None, None]
        normalized_array = feature_extractor.normalize(array, mean, std)
        self.assertTrue(np.array_equal(normalized_array, expected))

        normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
        self.assertTrue(np.array_equal(normalized_array, expected))

    @require_torch
    def test_normalize_tensor(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.rand(16, 32, 3)
        mean = [0.1, 0.5, 0.9]
        std = [0.2, 0.4, 0.6]

        # mean and std can be passed as lists or tensors.
        expected = (tensor - torch.tensor(mean)) / torch.tensor(std)
        normalized_tensor = feature_extractor.normalize(tensor, mean, std)
        self.assertTrue(torch.equal(normalized_tensor, expected))

        normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
        self.assertTrue(torch.equal(normalized_tensor, expected))

        # Normalize will detect automatically if channel first or channel last is used.
        tensor = torch.rand(3, 16, 32)
        expected = (tensor - torch.tensor(mean)[:, None, None]) / torch.tensor(std)[:, None, None]
        normalized_tensor = feature_extractor.normalize(tensor, mean, std)
        self.assertTrue(torch.equal(normalized_tensor, expected))

        normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
        self.assertTrue(torch.equal(normalized_tensor, expected))
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

    def test_center_crop_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)

        # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
        crop_sizes = [8, (8, 64), 20, (32, 64)]
        for size in crop_sizes:
            cropped_image = feature_extractor.center_crop(image, size)
            self.assertTrue(isinstance(cropped_image, PIL.Image.Image))

            # PIL Image.size is transposed compared to NumPy or PyTorch (width first instead of height first).
            expected_size = (size, size) if isinstance(size, int) else (size[1], size[0])
            self.assertEqual(cropped_image.size, expected_size)

    def test_center_crop_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = feature_extractor.to_numpy_array(image)

        # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
        crop_sizes = [8, (8, 64), 20, (32, 64)]
        for size in crop_sizes:
            cropped_array = feature_extractor.center_crop(array, size)
            self.assertTrue(isinstance(cropped_array, np.ndarray))

            expected_size = (size, size) if isinstance(size, int) else size
            self.assertEqual(cropped_array.shape[-2:], expected_size)

            # Check result is consistent with PIL.Image.crop
            cropped_image = feature_extractor.center_crop(image, size)
            self.assertTrue(np.array_equal(cropped_array, feature_extractor.to_numpy_array(cropped_image)))

    @require_torch
    def test_center_crop_tensor(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = feature_extractor.to_numpy_array(image)
        tensor = torch.tensor(array)

        # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
        crop_sizes = [8, (8, 64), 20, (32, 64)]
        for size in crop_sizes:
            cropped_tensor = feature_extractor.center_crop(tensor, size)
            self.assertTrue(isinstance(cropped_tensor, torch.Tensor))

            expected_size = (size, size) if isinstance(size, int) else size
            self.assertEqual(cropped_tensor.shape[-2:], expected_size)

            # Check result is consistent with PIL.Image.crop
            cropped_image = feature_extractor.center_crop(image, size)
            self.assertTrue(torch.equal(cropped_tensor, torch.tensor(feature_extractor.to_numpy_array(cropped_image))))
490
491
492
493


@require_vision
class LoadImageTester(unittest.TestCase):
494
495
496
497
498
499
    def test_load_img_url(self):
        img = load_image(INVOICE_URL)
        img_arr = np.array(img)

        self.assertEqual(img_arr.shape, (1061, 750, 3))

amyeroberts's avatar
amyeroberts committed
500
    @is_flaky()
501
    def test_load_img_url_timeout(self):
502
        with self.assertRaises((ReadTimeout, ConnectTimeout)):
503
504
            load_image(INVOICE_URL, timeout=0.001)

505
506
507
508
509
510
511
512
513
    def test_load_img_local(self):
        img = load_image("./tests/fixtures/tests_samples/COCO/000000039769.png")
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (480, 640, 3),
        )

514
515
    def test_load_img_base64_prefix(self):
        try:
516
            tmp_file = tempfile.NamedTemporaryFile(delete=False).name
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/datasets/hf-internal-testing/dummy-base64-images/raw/main/image_0.txt", f
                )

            with open(tmp_file, encoding="utf-8") as b64:
                img = load_image(b64.read())
                img_arr = np.array(img)

        finally:
            os.remove(tmp_file)

        self.assertEqual(img_arr.shape, (64, 32, 3))

    def test_load_img_base64(self):
        try:
533
            tmp_file = tempfile.NamedTemporaryFile(delete=False).name
534
535
536
537
538
539
540
541
542
543
544
545
546
547
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/datasets/hf-internal-testing/dummy-base64-images/raw/main/image_1.txt", f
                )

            with open(tmp_file, encoding="utf-8") as b64:
                img = load_image(b64.read())
                img_arr = np.array(img)

        finally:
            os.remove(tmp_file)

        self.assertEqual(img_arr.shape, (64, 32, 3))

548
549
    def test_load_img_base64_encoded_bytes(self):
        try:
550
            tmp_file = tempfile.NamedTemporaryFile(delete=False).name
551
552
553
554
555
556
557
558
559
560
561
562
563
564
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/datasets/hf-internal-testing/dummy-base64-images/raw/main/image_2.txt", f
                )

            with codecs.open(tmp_file, encoding="unicode_escape") as b64:
                img = load_image(b64.read())
                img_arr = np.array(img)

        finally:
            os.remove(tmp_file)

        self.assertEqual(img_arr.shape, (256, 256, 3))

565
    def test_load_img_rgba(self):
566
567
        # we use revision="refs/pr/1" until the PR is merged
        # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
568
569
570
        img = get_image_from_hub_dataset(
            "hf-internal-testing/fixtures_image_utils", "0-test-lena.png", revision="refs/pr/1"
        )
571

572
        img = load_image(img)  # img with mode RGBA
573
574
575
576
577
578
579
580
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (512, 512, 3),
        )

    def test_load_img_la(self):
581
582
        # we use revision="refs/pr/1" until the PR is merged
        # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
583
584
585
        img = get_image_from_hub_dataset(
            "hf-internal-testing/fixtures_image_utils", "1-test-parrots.png", revision="refs/pr/1"
        )
586

587
        img = load_image(img)  # img with mode LA
588
589
590
591
592
593
594
595
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (512, 768, 3),
        )

    def test_load_img_l(self):
596
597
        # we use revision="refs/pr/1" until the PR is merged
        # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
598
599
600
        img = get_image_from_hub_dataset(
            "hf-internal-testing/fixtures_image_utils", "2-test-tree.png", revision="refs/pr/1"
        )
601

602
        img = load_image(img)  # img with mode L
603
604
605
606
607
608
609
610
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (381, 225, 3),
        )

    def test_load_img_exif_transpose(self):
611
612
        # we use revision="refs/pr/1" until the PR is merged
        # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
613

614
615
616
        img_without_exif_transpose = get_image_from_hub_dataset(
            "hf-internal-testing/fixtures_image_utils", "3-test-cat-rotated.jpg", revision="refs/pr/1"
        )
617
618
619
620
621
622
623
        img_arr_without_exif_transpose = np.array(img_without_exif_transpose)

        self.assertEqual(
            img_arr_without_exif_transpose.shape,
            (333, 500, 3),
        )

624
        img_with_exif_transpose = load_image(img_without_exif_transpose)
625
626
627
628
629
630
        img_arr_with_exif_transpose = np.array(img_with_exif_transpose)

        self.assertEqual(
            img_arr_with_exif_transpose.shape,
            (500, 333, 3),
        )
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657


class UtilFunctionTester(unittest.TestCase):
    def test_get_image_size(self):
        # Test we can infer the size and channel dimension of an image.
        image = np.random.randint(0, 256, (32, 64, 3))
        self.assertEqual(get_image_size(image), (32, 64))

        image = np.random.randint(0, 256, (3, 32, 64))
        self.assertEqual(get_image_size(image), (32, 64))

        # Test the channel dimension can be overriden
        image = np.random.randint(0, 256, (3, 32, 64))
        self.assertEqual(get_image_size(image, channel_dim=ChannelDimension.LAST), (3, 32))

    def test_infer_channel_dimension(self):
        # Test we fail with invalid input
        with pytest.raises(ValueError):
            infer_channel_dimension_format(np.random.randint(0, 256, (10, 10)))

        with pytest.raises(ValueError):
            infer_channel_dimension_format(np.random.randint(0, 256, (10, 10, 10, 10, 10)))

        # Test we fail if neither first not last dimension is of size 3 or 1
        with pytest.raises(ValueError):
            infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50)))

658
659
660
661
        # But if we explicitly set one of the number of channels to 50 it works
        inferred_dim = infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50)), num_channels=50)
        self.assertEqual(inferred_dim, ChannelDimension.LAST)

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        # Test we correctly identify the channel dimension
        image = np.random.randint(0, 256, (3, 4, 5))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.FIRST)

        image = np.random.randint(0, 256, (1, 4, 5))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.FIRST)

        image = np.random.randint(0, 256, (4, 5, 3))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.LAST)

        image = np.random.randint(0, 256, (4, 5, 1))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.LAST)

        # We can take a batched array of images and find the dimension
        image = np.random.randint(0, 256, (1, 3, 4, 5))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.FIRST)
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

    def test_get_channel_dimension_axis(self):
        # Test we correctly identify the channel dimension
        image = np.random.randint(0, 256, (3, 4, 5))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 0)

        image = np.random.randint(0, 256, (1, 4, 5))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 0)

        image = np.random.randint(0, 256, (4, 5, 3))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 2)

        image = np.random.randint(0, 256, (4, 5, 1))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 2)

        # We can take a batched array of images and find the dimension
        image = np.random.randint(0, 256, (1, 3, 4, 5))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 1)