distillation.py 21.9 KB
Newer Older
1
2
3
import argparse
import gc
import os
4
import warnings
5
6
7
8
9
10
11
12
13
from pathlib import Path
from typing import List

import pytorch_lightning as pl
import torch
from torch import nn
from torch.nn import functional as F

from lightning_base import generic_train
14
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5Config, T5ForConditionalGeneration
15
from transformers.modeling_bart import shift_tokens_right
16
17
18


try:
19
    from .finetune import SummarizationModule, TranslationModule
20
21
    from .finetune import main as ft_main
    from .initialization_utils import copy_layers, init_student
22
23
    from .utils import (
        any_requires_grad,
24
        assert_all_frozen,
25
        calculate_bleu,
26
        freeze_params,
27
        label_smoothed_nll_loss,
28
29
        pickle_load,
        use_task_specific_params,
30
    )
31
except ImportError:
32
    from finetune import SummarizationModule, TranslationModule
33
    from finetune import main as ft_main
34
    from initialization_utils import copy_layers, init_student
35
36
    from utils import (
        any_requires_grad,
37
        assert_all_frozen,
38
        calculate_bleu,
39
        freeze_params,
40
        label_smoothed_nll_loss,
41
42
        pickle_load,
        use_task_specific_params,
43
    )
44
45


46
class BartSummarizationDistiller(SummarizationModule):
47
48
    """Supports Bart, Pegasus and other models that inherit from Bart."""

49
50
51
52
    loss_names = ["loss", "ce_loss", "mlm_loss", "enc_mse_loss", "hid_loss_enc", "hid_loss_dec"]

    def __init__(self, hparams):
        assert Path(hparams.data_dir).exists()
53
        student, student_cfg, teacher = self.pre_init(hparams)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

        super().__init__(hparams, model=student, config=student_cfg)
        self.teacher = teacher
        use_task_specific_params(self.teacher, "summarization")
        freeze_params(self.teacher)
        self.sanity_check_gradients()
        self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
        self.temperature = 2.0
        self.alpha_mlm = hparams.alpha_mlm
        self.alpha_ce = hparams.alpha_ce
        self.alpha_hid = hparams.alpha_hid
        # self.alpha_cos = hparams.alpha_cos
        self.alpha_encoder_loss = self.hparams.alpha_encoder_loss
        gc.collect()
        torch.cuda.empty_cache()

    def sanity_check_gradients(self):
        assert_all_frozen(self.teacher)
        assert_all_frozen(self.model.model.decoder.embed_tokens)
        assert_all_frozen(self.model.model.encoder.embed_tokens)
        if self.different_encoder:
            assert any_requires_grad(self.model.model.encoder)
        else:
            freeze_params(self.model.model.encoder)
            del self.teacher.model.encoder

    def pre_init(self, hparams):
81
82
        self.output_dir = Path(hparams.output_dir)
        self.output_dir.mkdir(exist_ok=True)
83
        teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
84
85
86
87
        student_updates = {
            "decoder_layers": hparams.student_decoder_layers,
            "encoder_layers": hparams.student_encoder_layers,
        }
88
89
        if hparams.length_penalty != -1:
            student_updates["length_penalty"] = hparams.length_penalty
90
91
        e_layers_to_copy: List = get_layers_to_copy(student_updates["encoder_layers"], teacher.config.encoder_layers)
        hparams.e_layer_to_copy = e_layers_to_copy
92
93
94
95
96
97
98
99
100
101
102

        d_layers_to_copy: List = get_layers_to_copy(student_updates["decoder_layers"], teacher.config.decoder_layers)

        if hparams.supervise_forward:
            hparams.d_matches = get_layers_to_supervise(
                student_updates["decoder_layers"], teacher.config.decoder_layers
            )
        else:
            hparams.d_matches = d_layers_to_copy
        hparams.d_layer_to_copy = d_layers_to_copy

103
104
105
        kw = teacher.config.to_diff_dict()
        kw.update(student_updates)
        # Copy weights
106
107
        student_cfg = teacher.config_class(**kw)
        student = type(teacher)(student_cfg)
108
        student, _ = init_student(student, teacher)
109
        save_dir = self.output_dir.joinpath("student")
110
        self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
111
112
113
        student.save_pretrained(save_dir)
        hparams.model_name_or_path = str(save_dir)
        return student, student_cfg, teacher
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    def copy_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
        if teacher.config.model_type == "t5":
            return self.copy_t5_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
        self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.encoder_layers
        self.different_decoder = hparams.student_decoder_layers != teacher.config.decoder_layers
        if self.different_decoder:
            copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy)
        if self.different_encoder:
            copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy)

    def copy_t5_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
        self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.num_layers
        self.different_decoder = hparams.student_decoder_layers != teacher.config.num_layers
        if self.different_decoder:
            copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy)
        if self.different_encoder:
            copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy)

    def calc_mse_loss(self, teacher_outputs: torch.Tensor, student_outputs: torch.Tensor, mask) -> torch.FloatTensor:
        if mask is not None:
            # mask has False at padding_idx
            sel_mask = mask[:, :, None].expand_as(student_outputs).bool()
            s_logits_slct = torch.masked_select(student_outputs, sel_mask)
            t_logits_slct = torch.masked_select(teacher_outputs, sel_mask)
        else:
            t_logits_slct = teacher_outputs
            s_logits_slct = student_outputs
        return F.mse_loss(s_logits_slct, t_logits_slct)

    def calc_ce_loss(self, mask, s_logits, t_logits):
        if mask is not None:
            # mask has False at padding_idx
            sel_mask = mask[:, :, None].expand_as(s_logits)
            s_logits_slct = torch.masked_select(
                s_logits, sel_mask
            )  # (bs * seq_length * voc_size) modulo the 1s in mask
            t_logits_slct = torch.masked_select(
                t_logits, sel_mask
            )  # (bs * seq_length * voc_size) modulo the 1s in mask
        else:
            t_logits_slct = t_logits
            s_logits_slct = s_logits  # (bs * seq_length * voc_size) modulo the 1s in mask
        s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        assert t_logits_slct.size() == s_logits_slct.size()
        loss_ce = (
            self.ce_loss_fct(
                F.log_softmax(s_logits_slct / self.temperature, dim=-1),
                F.softmax(t_logits_slct / self.temperature, dim=-1),
            )
            * (self.temperature) ** 2
        )
        return loss_ce, s_logits_slct, t_logits_slct

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        SummarizationModule.add_model_specific_args(parser, root_dir)
172
        add_distill_args(parser)
173
174
175
176
177
        return parser

    def _step(self, batch):
        # assert is_frozen(self.teacher)
        pad_token_id = self.tokenizer.pad_token_id
178
179
        input_ids, src_mask, tgt_ids = batch["input_ids"], batch["attention_mask"], batch["labels"]
        decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
180
        # noinspection PyCallingNonCallable
181
        lm_logits, dec_hidden, enc_outputs, enc_hidden_state = self(
182
183
184
185
186
            input_ids,
            attention_mask=src_mask,
            decoder_input_ids=decoder_input_ids,
            output_hidden_states=True,
            output_attentions=False,
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            use_cache=False,
        )  # TODO(@sshleifer): return_dict=True cleanup

        # Same cross entropy vs. label smoothing logic as finetune.py
        assert lm_logits.shape[-1] == self.model.config.vocab_size
        if self.hparams.label_smoothing == 0:
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
            loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
            student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
        else:
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
            student_lm_loss, _ = label_smoothed_nll_loss(
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
            )
201
202

        def zero_tensor():
203
            return torch.tensor(0.0).type_as(student_lm_loss)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
        if self.different_encoder:
            with torch.no_grad():
                teacher_enc_outputs, teacher_enc_hid, _ = self.teacher.model.encoder(
                    input_ids, attention_mask=src_mask, output_hidden_states=True
                )
            if self.hparams.alpha_encoder_loss > 0:
                loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, src_mask)

            hid_loss_enc = self.calc_hidden_loss(
                src_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
            )

        teacher_enc_outputs = (enc_outputs,)
        assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)

        with torch.no_grad():
            tloss, tlogits, tdec_hidden, _ = self.teacher(
                input_ids,
                attention_mask=src_mask,
                encoder_outputs=teacher_enc_outputs,
                decoder_input_ids=decoder_input_ids,
227
                lm_labels=tgt_ids,
228
229
230
                output_hidden_states=True,
            )
        dec_mask = decoder_input_ids.ne(pad_token_id)
231
        loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, lm_logits, tlogits)
232
        if self.alpha_hid > 0:
233
            hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_matches)
234
235
236

        blended_loss = (
            self.alpha_ce * loss_ce
237
            + self.alpha_mlm * student_lm_loss
238
239
240
            + self.hparams.alpha_encoder_loss * loss_encoder
            + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
        )
241
        return blended_loss, loss_ce, student_lm_loss, loss_encoder, hid_loss_enc, hid_loss_dec
242
243

    def calc_hidden_loss(self, attention_mask, hidden_states, hidden_states_T, matches):
244
245
246
        msg = "expected list or tuple for hidden_states, got tensor of shape: "
        assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}"
        assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}"
247
248
        mask = attention_mask.to(hidden_states[0])
        valid_count = mask.sum() * hidden_states[0].size(-1)
249
250
251
252
253
254
255
256
        student_states = torch.stack([hidden_states[i] for i in range(len(matches))])
        teacher_states = torch.stack([hidden_states_T[j] for j in matches])
        if self.hparams.normalize_hidden:
            student_states = F.layer_norm(student_states, student_states.shape[1:])
            teacher_states = F.layer_norm(teacher_states, teacher_states.shape[1:])
        mse = F.mse_loss(student_states, teacher_states, reduction="none")
        masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count
        return masked_mse
257
258


259
def add_distill_args(parser):
260
    parser.add_argument("--teacher", type=str)
261
262
263
264
265
266
267
268
    parser.add_argument("--alpha_ce", default=0.8, type=float)
    parser.add_argument("--alpha_mlm", default=0.2, type=float)
    parser.add_argument("--alpha_encoder_loss", default=0.0, type=float)
    parser.add_argument("--alpha_hid", default=0.0, type=float, required=False)
    parser.add_argument("--student_decoder_layers", default=12, type=int, required=False)
    parser.add_argument("--student_encoder_layers", default=12, type=int, required=False)
    parser.add_argument("--no_teacher", action="store_true", default=False)
    parser.add_argument("--length_penalty", type=float, default=-1)
269
270
    parser.add_argument("--supervise_forward", action="store_true", default=False)
    parser.add_argument("--normalize_hidden", action="store_true", default=False)
271
272
273


class BartTranslationDistiller(BartSummarizationDistiller):
274
275
    """Supports Mbart, Marian, other models that inherit from Bart."""

276
277
    mode = "translation"
    metric_names = ["bleu"]
278
    default_val_metric = "bleu"
279
280
281
282
283
284
285
286
287
288
289

    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        assert hparams.src_lang is not None
        assert hparams.tgt_lang is not None
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]

    def calc_generative_metrics(self, preds, target) -> dict:
290
        return calculate_bleu(preds, target)
291
292
293
294
295
296
297
298

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        TranslationModule.add_model_specific_args(parser, root_dir)
        add_distill_args(parser)
        return parser


299
class T5SummarizationDistiller(BartSummarizationDistiller):
300
    def pre_init(self, hparams):
301
        raise NotImplementedError("T5 Distillation does not work yet")
302
303
        self.output_dir = Path(hparams.output_dir)
        self.output_dir.mkdir(exist_ok=True)
304
305
        teacher = T5ForConditionalGeneration.from_pretrained(hparams.teacher)
        n_layer = hparams.student_decoder_layers
306
        assert n_layer == hparams.student_encoder_layers  # TODO(SS): relax this constraint so that we can do 12-6.
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        d_layers_to_copy = get_layers_to_copy(n_layer, len(teacher.decoder.block))
        e_layers_to_copy: List = get_layers_to_copy(n_layer, len(teacher.encoder.block))
        student_updates = {"num_layers": n_layer}
        hparams.d_layer_to_copy = d_layers_to_copy
        hparams.e_layer_to_copy = e_layers_to_copy
        kw = teacher.config.to_diff_dict()

        kw.update(student_updates)
        # Copy weights
        student_cfg = T5Config(**kw)
        student = T5ForConditionalGeneration(student_cfg)
        student, _ = init_student(student, teacher)
        self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
        Path(hparams.output_dir).mkdir(exist_ok=True)
        task_specific_params = student.config.task_specific_params
        if task_specific_params is not None:
323
324
325
326
327
328
329
            student.config.update(task_specific_params.get("summarization", {}))  # TODO: dont hardcode
        save_dir = self.output_dir.joinpath("student")
        save_dir.mkdir(exist_ok=True)

        student.save_pretrained(save_dir)
        hparams.model_name_or_path = str(save_dir)
        return student, student_cfg, teacher
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

    def freeze_embeds(self):
        freeze_params(self.model.shared)
        for d in [self.model.encoder, self.model.decoder]:
            freeze_params(d.embed_tokens)

    def sanity_check_gradients(self):
        """T5"""
        assert_all_frozen(self.teacher)
        assert_all_frozen(self.model.decoder.embed_tokens)
        assert_all_frozen(self.model.encoder.embed_tokens)
        if self.different_encoder:
            assert any_requires_grad(self.model.encoder)
        else:
            freeze_params(self.model.encoder)
            del self.teacher.model.encoder
        if self.different_decoder:
            assert any_requires_grad(self.model.decoder)
        else:
            freeze_params(self.model.decoder)  # TODO(SS): very suspicious

    def _step(self, batch):
        pad_token_id = self.tokenizer.pad_token_id
        source_ids, source_mask, y = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
        decoder_input_ids = y[:, :-1].contiguous()
        labels = y[:, 1:].clone()
        labels[y[:, 1:] == pad_token_id] = -100
        # noinspection PyCallingNonCallable
        dec_mask = decoder_input_ids.ne(pad_token_id)

        sloss, slogits, dec_hidden, enc_outputs, enc_hidden_state = self(
            source_ids,
            attention_mask=source_mask,
            decoder_input_ids=decoder_input_ids,
            labels=labels,
            output_hidden_states=True,
            output_attentions=False,
            use_cache=False,
        )

        def zero_tensor():
            return torch.tensor(0.0).type_as(sloss)

        loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
        if self.different_encoder:
            with torch.no_grad():
                teacher_enc_outputs, teacher_enc_hid = self.teacher.encoder(
Lysandre's avatar
Lysandre committed
377
378
379
380
                    source_ids,
                    attention_mask=source_mask,
                    output_hidden_states=True,
                    use_cache=False,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
                )
            if self.hparams.alpha_encoder_loss > 0:
                loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, source_mask)

            hid_loss_enc = self.calc_hidden_loss(
                source_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
            )

        teacher_enc_outputs = (enc_outputs,)
        assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)

        with torch.no_grad():
            tloss, tlogits, tdec_hidden, _ = self.teacher(
                source_ids,
                attention_mask=source_mask,
                encoder_outputs=teacher_enc_outputs,
                decoder_input_ids=decoder_input_ids,
398
                labels=labels,
399
400
401
402
403
404
                output_hidden_states=True,
                use_cache=False,
            )

        loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, slogits, tlogits)
        if self.alpha_hid > 0:
405
            hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_matches)
406
407
408
409
410
411
412
413
414
415
416
417
418

        blended_loss = (
            self.alpha_ce * loss_ce
            + self.alpha_mlm * sloss
            + self.hparams.alpha_encoder_loss * loss_encoder
            + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
        )
        return blended_loss, loss_ce, sloss, loss_encoder, hid_loss_enc, hid_loss_dec


def create_module(args):
    t5 = "t5" in args.model_name_or_path
    if args.no_teacher:
419
420
421
        module_cls = TranslationModule if "translation" in args.task else SummarizationModule
    elif t5:  # DISTILL T5 WITH TEACHER FOR SUMMARIZATION
        assert "translation" not in args.task, "t5 translation distillation not supported"
422
        module_cls = T5SummarizationDistiller
423
424
    else:  # DISTILL WITH TEACHER
        module_cls = BartTranslationDistiller if "translation" in args.task else BartSummarizationDistiller
425
    args.setup_cls: str = module_cls.__name__
426
    print(f"using module {args.setup_cls}")
427
428
429
430
431
    model = module_cls(args)
    return model


def evaluate_checkpoint(ckpt_path: Path, dest_dir=None):
432
    # TODO(SS): DELETE? Better to convert_pl_ckpt_to_hf and run_eval.py
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    exp_dir = ckpt_path.parent
    if dest_dir is None:
        dest_dir = exp_dir
    clash = list(dest_dir.glob("test_generations*"))
    if clash:
        print(f"SKIPPING to avoid overwriting {clash}")
    ckpt = torch.load(ckpt_path, map_location="cpu")
    if "hparams" in ckpt:
        args = argparse.Namespace(**ckpt["hparams"])
    else:
        args = argparse.Namespace(**pickle_load(exp_dir / "hparams.pkl"))
    args.resume_from_checkpoint = str(ckpt_path)
    args.do_train = False
    args.output_dir = str(dest_dir)
    args.n_gpu = 1
    args.eval_batch_size = 16
    Path(args.output_dir).mkdir(exist_ok=True)
    model = create_module(args)
    trainer: pl.Trainer = generic_train(model, args, early_stopping_callback=False)
    trainer.test(model)


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
LAYERS_TO_COPY = {
    # maps  num layers in student -> which teacher layers to copy.
    # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
    12: {
        1: [0],
        2: [0, 6],
        3: [0, 6, 11],
        4: [0, 4, 8, 11],
        6: [0, 2, 4, 7, 9, 11],
        9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
        12: list(range(12)),
    },
    16: {  # maps  num layers in student -> which teacher layers to copy
        1: [0],
        2: [0, 8],
        3: [0, 8, 15],
        4: [0, 5, 10, 15],
        6: [0, 3, 6, 9, 12, 15],
        8: [0, 2, 4, 6, 8, 10, 12, 15],
        9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
475
        12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
476
477
478
479
        16: list(range(16)),
    },
    6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
480
481
482
483
484
485
486
487
488
489
LAYERS_TO_SUPERVISE = {
    12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
    16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
    6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
    2: {1: [1], 2: [0, 1]},
}


def get_layers_to_supervise(n_student, n_teacher):
    return LAYERS_TO_SUPERVISE[n_teacher][n_student]
490
491
492
493


def get_layers_to_copy(n_student, n_teacher):
    try:
494
495
496
        val = LAYERS_TO_COPY[n_teacher][n_student]
        assert len(LAYERS_TO_SUPERVISE[n_teacher][n_student]) == len(val) == n_student
        return val
497
    except KeyError:
498
499
500
501
        if n_student != n_teacher:
            warnings.warn(
                f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first {n_student}"
            )
502
        return list(range(n_student))
503
504
505
506
507
508
509
510
511
512
513
514
515


def distill_main(args):
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    model = create_module(args)
    return ft_main(args, model=model)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
516
    parser = pl.Trainer.add_argparse_args(parser)
517
    parser = BartSummarizationDistiller.add_model_specific_args(parser, os.getcwd())
518
519
520
    args = parser.parse_args()

    distill_main(args)