test_image_processing_common.py 23.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import inspect
17
18
import json
import os
19
import pathlib
20
import tempfile
21
import time
22

23
import numpy as np
amyeroberts's avatar
amyeroberts committed
24
25
26
import requests

from transformers import AutoImageProcessor, BatchFeature
27
from transformers.image_utils import AnnotationFormat, AnnotionFormat
28
29
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
30
31
32
33
34
35
36
37
38


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image


39
40
41
42
43
44
45
46
47
48
def prepare_image_inputs(
    batch_size,
    min_resolution,
    max_resolution,
    num_channels,
    size_divisor=None,
    equal_resolution=False,
    numpify=False,
    torchify=False,
):
49
50
51
52
53
54
55
56
57
    """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
    or a list of PyTorch tensors if one specifies torchify=True.

    One can specify whether the images are of the same resolution or not.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    image_inputs = []
58
    for i in range(batch_size):
59
        if equal_resolution:
60
            width = height = max_resolution
61
62
        else:
            # To avoid getting image width/height 0
63
            if size_divisor is not None:
64
                # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
65
66
67
                min_resolution = max(size_divisor, min_resolution)
            width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
        image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
68
69
70
71
72
73
74
75

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]

    if torchify:
        image_inputs = [torch.from_numpy(image) for image in image_inputs]

76
77
78
79
    if numpify:
        # Numpy images are typically in channels last format
        image_inputs = [image.transpose(1, 2, 0) for image in image_inputs]

80
81
82
    return image_inputs


83
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False):
84
85
86
    """This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""

    video = []
87
88
    for i in range(num_frames):
        video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
89
90
91
92
93
94
95
96
97
98
99

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]

    if torchify:
        video = [torch.from_numpy(frame) for frame in video]

    return video


100
101
102
103
104
105
106
107
108
109
def prepare_video_inputs(
    batch_size,
    num_frames,
    num_channels,
    min_resolution,
    max_resolution,
    equal_resolution=False,
    numpify=False,
    torchify=False,
):
110
111
112
113
114
115
116
117
118
    """This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
    one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.

    One can specify whether the videos are of the same resolution or not.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    video_inputs = []
119
    for i in range(batch_size):
120
        if equal_resolution:
121
            width = height = max_resolution
122
        else:
123
            width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
124
            video = prepare_video(
125
126
                num_frames=num_frames,
                num_channels=num_channels,
127
128
129
130
131
132
133
134
135
136
                width=width,
                height=height,
                numpify=numpify,
                torchify=torchify,
            )
        video_inputs.append(video)

    return video_inputs


137
class ImageProcessingTestMixin:
138
    test_cast_dtype = None
amyeroberts's avatar
amyeroberts committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    image_processing_class = None
    fast_image_processing_class = None
    image_processors_list = None
    test_slow_image_processor = True
    test_fast_image_processor = True

    def setUp(self):
        image_processor_list = []

        if self.test_slow_image_processor and self.image_processing_class:
            image_processor_list.append(self.image_processing_class)

        if self.test_fast_image_processor and self.fast_image_processing_class:
            image_processor_list.append(self.fast_image_processing_class)

        self.image_processor_list = image_processor_list

    @require_vision
    @require_torch
    def test_slow_fast_equivalence(self):
        dummy_image = Image.open(
            requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
        )

        if not self.test_slow_image_processor or not self.test_fast_image_processor:
            self.skipTest("Skipping slow/fast equivalence test")

        if self.image_processing_class is None or self.fast_image_processing_class is None:
            self.skipTest("Skipping slow/fast equivalence test as one of the image processors is not defined")

        image_processor_slow = self.image_processing_class(**self.image_processor_dict)
        image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)

        encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
        encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")

175
        self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-2))
amyeroberts's avatar
amyeroberts committed
176
177
178
179
180
181
182
183
184
185

    @require_vision
    @require_torch
    def test_fast_is_faster_than_slow(self):
        if not self.test_slow_image_processor or not self.test_fast_image_processor:
            self.skipTest("Skipping speed test")

        if self.image_processing_class is None or self.fast_image_processing_class is None:
            self.skipTest("Skipping speed test as one of the image processors is not defined")

186
187
188
189
190
191
        def measure_time(image_processor, image):
            start = time.time()
            _ = image_processor(image, return_tensors="pt")
            return time.time() - start

        dummy_images = torch.randint(0, 255, (4, 3, 224, 224), dtype=torch.uint8)
amyeroberts's avatar
amyeroberts committed
192
        image_processor_slow = self.image_processing_class(**self.image_processor_dict)
193
        image_processor_fast = self.fast_image_processing_class()
amyeroberts's avatar
amyeroberts committed
194

195
196
        fast_time = measure_time(image_processor_fast, dummy_images)
        slow_time = measure_time(image_processor_slow, dummy_images)
amyeroberts's avatar
amyeroberts committed
197
198

        self.assertLessEqual(fast_time, slow_time)
199
200

    def test_image_processor_to_json_string(self):
amyeroberts's avatar
amyeroberts committed
201
202
203
204
205
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class(**self.image_processor_dict)
            obj = json.loads(image_processor.to_json_string())
            for key, value in self.image_processor_dict.items():
                self.assertEqual(obj[key], value)
206
207

    def test_image_processor_to_json_file(self):
amyeroberts's avatar
amyeroberts committed
208
209
        for image_processing_class in self.image_processor_list:
            image_processor_first = image_processing_class(**self.image_processor_dict)
210

amyeroberts's avatar
amyeroberts committed
211
212
213
214
            with tempfile.TemporaryDirectory() as tmpdirname:
                json_file_path = os.path.join(tmpdirname, "image_processor.json")
                image_processor_first.to_json_file(json_file_path)
                image_processor_second = image_processing_class.from_json_file(json_file_path)
215

amyeroberts's avatar
amyeroberts committed
216
            self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
217
218

    def test_image_processor_from_and_save_pretrained(self):
amyeroberts's avatar
amyeroberts committed
219
220
221
222
223
224
225
226
227
228
229
230
231
        for image_processing_class in self.image_processor_list:
            image_processor_first = image_processing_class(**self.image_processor_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
                check_json_file_has_correct_format(saved_file)
                image_processor_second = image_processing_class.from_pretrained(tmpdirname)

            self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())

    def test_image_processor_save_load_with_autoimageprocessor(self):
        for image_processing_class in self.image_processor_list:
            image_processor_first = image_processing_class(**self.image_processor_dict)
232

amyeroberts's avatar
amyeroberts committed
233
234
235
            with tempfile.TemporaryDirectory() as tmpdirname:
                saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
                check_json_file_has_correct_format(saved_file)
236

amyeroberts's avatar
amyeroberts committed
237
238
239
                image_processor_second = AutoImageProcessor.from_pretrained(tmpdirname)

            self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
240

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def test_save_load_fast_slow(self):
        "Test that we can load a fast image processor from a slow one and vice-versa."
        if self.image_processing_class is None or self.fast_image_processing_class is None:
            self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined")

        image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
        image_processor_slow_0 = self.image_processing_class(**image_processor_dict)

        # Load fast image processor from slow one
        with tempfile.TemporaryDirectory() as tmpdirname:
            image_processor_slow_0.save_pretrained(tmpdirname)
            image_processor_fast_0 = self.fast_image_processing_class.from_pretrained(tmpdirname)

        image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict)

        # Load slow image processor from fast one
        with tempfile.TemporaryDirectory() as tmpdirname:
            image_processor_fast_1.save_pretrained(tmpdirname)
            image_processor_slow_1 = self.image_processing_class.from_pretrained(tmpdirname)

        self.assertEqual(image_processor_slow_0.to_dict(), image_processor_slow_1.to_dict())
        self.assertEqual(image_processor_fast_0.to_dict(), image_processor_fast_1.to_dict())

    def test_save_load_fast_slow_auto(self):
        "Test that we can load a fast image processor from a slow one and vice-versa using AutoImageProcessor."
        if self.image_processing_class is None or self.fast_image_processing_class is None:
            self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined")

        image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
        image_processor_slow_0 = self.image_processing_class(**image_processor_dict)

        # Load fast image processor from slow one
        with tempfile.TemporaryDirectory() as tmpdirname:
            image_processor_slow_0.save_pretrained(tmpdirname)
            image_processor_fast_0 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=True)

        image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict)

        # Load slow image processor from fast one
        with tempfile.TemporaryDirectory() as tmpdirname:
            image_processor_fast_1.save_pretrained(tmpdirname)
            image_processor_slow_1 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=False)

        self.assertEqual(image_processor_slow_0.to_dict(), image_processor_slow_1.to_dict())
        self.assertEqual(image_processor_fast_0.to_dict(), image_processor_fast_1.to_dict())

287
    def test_init_without_params(self):
amyeroberts's avatar
amyeroberts committed
288
289
290
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class()
            self.assertIsNotNone(image_processor)
291
292
293
294

    @require_torch
    @require_vision
    def test_cast_dtype_device(self):
amyeroberts's avatar
amyeroberts committed
295
296
297
298
        for image_processing_class in self.image_processor_list:
            if self.test_cast_dtype is not None:
                # Initialize image_processor
                image_processor = image_processing_class(**self.image_processor_dict)
299

amyeroberts's avatar
amyeroberts committed
300
301
                # create random PyTorch tensors
                image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
302

amyeroberts's avatar
amyeroberts committed
303
304
305
306
                encoding = image_processor(image_inputs, return_tensors="pt")
                # for layoutLM compatiblity
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.float32)
307

amyeroberts's avatar
amyeroberts committed
308
309
310
                encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.float16)
311

amyeroberts's avatar
amyeroberts committed
312
313
314
                encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
315

amyeroberts's avatar
amyeroberts committed
316
317
                with self.assertRaises(TypeError):
                    _ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
318

amyeroberts's avatar
amyeroberts committed
319
320
321
322
                # Try with text + image feature
                encoding = image_processor(image_inputs, return_tensors="pt")
                encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
                encoding = encoding.to(torch.float16)
323

amyeroberts's avatar
amyeroberts committed
324
325
326
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.float16)
                self.assertEqual(encoding.input_ids.dtype, torch.long)
327
328

    def test_call_pil(self):
amyeroberts's avatar
amyeroberts committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = image_processing_class(**self.image_processor_dict)
            # create random PIL images
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
            for image in image_inputs:
                self.assertIsInstance(image, Image.Image)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
348
349

    def test_call_numpy(self):
amyeroberts's avatar
amyeroberts committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = image_processing_class(**self.image_processor_dict)
            # create random numpy tensors
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
            for image in image_inputs:
                self.assertIsInstance(image, np.ndarray)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
369
370

    def test_call_pytorch(self):
amyeroberts's avatar
amyeroberts committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = image_processing_class(**self.image_processor_dict)
            # create random PyTorch tensors
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

            for image in image_inputs:
                self.assertIsInstance(image, torch.Tensor)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            self.assertEqual(
                tuple(encoded_images.shape),
                (self.image_processor_tester.batch_size, *expected_output_image_shape),
            )
amyeroberts's avatar
amyeroberts committed
392
393

    def test_call_numpy_4_channels(self):
amyeroberts's avatar
amyeroberts committed
394
395
396
397
398
399
400
401
402
403
404
405
406
        for image_processing_class in self.image_processor_list:
            # Test that can process images which have an arbitrary number of channels
            # Initialize image_processing
            image_processor = image_processing_class(**self.image_processor_dict)

            # create random numpy tensors
            self.image_processor_tester.num_channels = 4
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)

            # Test not batched input
            encoded_images = image_processor(
                image_inputs[0],
                return_tensors="pt",
407
                input_data_format="channels_last",
amyeroberts's avatar
amyeroberts committed
408
409
410
411
412
413
414
415
416
417
                image_mean=0,
                image_std=1,
            ).pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processor(
                image_inputs,
                return_tensors="pt",
418
                input_data_format="channels_last",
amyeroberts's avatar
amyeroberts committed
419
420
421
422
423
424
425
                image_mean=0,
                image_std=1,
            ).pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
426

427
    def test_image_processor_preprocess_arguments(self):
amyeroberts's avatar
amyeroberts committed
428
429
430
431
432
433
434
435
436
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class(**self.image_processor_dict)
            if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"):
                preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args
                preprocess_parameter_names.remove("self")
                preprocess_parameter_names.sort()
                valid_processor_keys = image_processor._valid_processor_keys
                valid_processor_keys.sort()
                self.assertEqual(preprocess_parameter_names, valid_processor_keys)
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

class AnnotationFormatTestMixin:
    # this mixin adds a test to assert that usages of the
    # to-be-deprecated `AnnotionFormat` continue to be
    # supported for the time being

    def test_processor_can_use_legacy_annotation_format(self):
        image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
        fixtures_path = pathlib.Path(__file__).parent / "fixtures" / "tests_samples" / "COCO"

        with open(fixtures_path / "coco_annotations.txt", "r") as f:
            detection_target = json.loads(f.read())

        detection_annotations = {"image_id": 39769, "annotations": detection_target}

        detection_params = {
            "images": Image.open(fixtures_path / "000000039769.png"),
            "annotations": detection_annotations,
            "return_tensors": "pt",
        }

        with open(fixtures_path / "coco_panoptic_annotations.txt", "r") as f:
            panoptic_target = json.loads(f.read())

        panoptic_annotations = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": panoptic_target}

        masks_path = pathlib.Path(fixtures_path / "coco_panoptic")

        panoptic_params = {
            "images": Image.open(fixtures_path / "000000039769.png"),
            "annotations": panoptic_annotations,
            "return_tensors": "pt",
            "masks_path": masks_path,
        }

        test_cases = [
            ("coco_detection", detection_params),
            ("coco_panoptic", panoptic_params),
            (AnnotionFormat.COCO_DETECTION, detection_params),
            (AnnotionFormat.COCO_PANOPTIC, panoptic_params),
            (AnnotationFormat.COCO_DETECTION, detection_params),
            (AnnotationFormat.COCO_PANOPTIC, panoptic_params),
        ]

        def _compare(a, b) -> None:
            if isinstance(a, (dict, BatchFeature)):
                self.assertEqual(a.keys(), b.keys())
                for k, v in a.items():
                    _compare(v, b[k])
            elif isinstance(a, list):
                self.assertEqual(len(a), len(b))
                for idx in range(len(a)):
                    _compare(a[idx], b[idx])
            elif isinstance(a, torch.Tensor):
                self.assertTrue(torch.allclose(a, b, atol=1e-3))
            elif isinstance(a, str):
                self.assertEqual(a, b)

        for annotation_format, params in test_cases:
            with self.subTest(annotation_format):
                image_processor_params = {**image_processor_dict, **{"format": annotation_format}}
                image_processor_first = self.image_processing_class(**image_processor_params)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    image_processor_first.save_pretrained(tmpdirname)
                    image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)

                # check the 'format' key exists and that the dicts of the
                # first and second processors are equal
                self.assertIn("format", image_processor_first.to_dict().keys())
                self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())

                # perform encoding using both processors and compare
                # the resulting BatchFeatures
                first_encoding = image_processor_first(**params)
                second_encoding = image_processor_second(**params)
                _compare(first_encoding, second_encoding)