test_image_processing_idefics2.py 13.5 KB
Newer Older
amyeroberts's avatar
amyeroberts committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_image_processing_common import ImageProcessingTestMixin


if is_vision_available():
    from PIL import Image

    from transformers import Idefics2ImageProcessor


if is_torch_available():
    import torch


class Idefics2ImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        num_images=1,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_rescale=True,
        rescale_factor=1 / 255,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
        do_convert_rgb=True,
        do_pad=True,
        do_image_splitting=True,
    ):
        size = size if size is not None else {"shortest_edge": 378, "longest_edge": 980}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_images = num_images
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_convert_rgb = do_convert_rgb
        self.do_pad = do_pad
        self.do_image_splitting = do_image_splitting

    def prepare_image_processor_dict(self):
        return {
            "do_convert_rgb": self.do_convert_rgb,
            "do_resize": self.do_resize,
            "size": self.size,
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_pad": self.do_pad,
            "do_image_splitting": self.do_image_splitting,
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
        This function computes the expected height and width when providing images to BridgeTowerImageProcessor,
        assuming do_resize is set to True with a scalar size and size_divisor.
        """
        if not batched:
            shortest_edge = self.size["shortest_edge"]
            longest_edge = self.size["longest_edge"]
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
102
103
            elif isinstance(image, np.ndarray):
                h, w = image.shape[0], image.shape[1]
amyeroberts's avatar
amyeroberts committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            else:
                h, w = image.shape[1], image.shape[2]

            aspect_ratio = w / h
            if w > h and w >= longest_edge:
                w = longest_edge
                h = int(w / aspect_ratio)
            elif h > w and h >= longest_edge:
                h = longest_edge
                w = int(h * aspect_ratio)
            w = max(w, shortest_edge)
            h = max(h, shortest_edge)
            expected_height = h
            expected_width = w
        else:
            expected_values = []
            for images in image_inputs:
                for image in images:
                    expected_height, expected_width = self.get_expected_values([image])
                    expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width

    def expected_output_image_shape(self, images):
        height, width = self.get_expected_values(images, batched=True)
        effective_nb_images = self.num_images * 5 if self.do_image_splitting else 1
        return effective_nb_images, self.num_channels, height, width

    def prepare_image_inputs(
        self,
        batch_size=None,
        min_resolution=None,
        max_resolution=None,
        num_channels=None,
        num_images=None,
        size_divisor=None,
        equal_resolution=False,
        numpify=False,
        torchify=False,
    ):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.

        One can specify whether the images are of the same resolution or not.
        """
        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        batch_size = batch_size if batch_size is not None else self.batch_size
        min_resolution = min_resolution if min_resolution is not None else self.min_resolution
        max_resolution = max_resolution if max_resolution is not None else self.max_resolution
        num_channels = num_channels if num_channels is not None else self.num_channels
        num_images = num_images if num_images is not None else self.num_images

        images_list = []
        for i in range(batch_size):
            images = []
            for j in range(num_images):
                if equal_resolution:
                    width = height = max_resolution
                else:
                    # To avoid getting image width/height 0
                    if size_divisor is not None:
                        # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
                        min_resolution = max(size_divisor, min_resolution)
                    width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
                images.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
            images_list.append(images)

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            images_list = [[Image.fromarray(np.moveaxis(image, 0, -1)) for image in images] for images in images_list]

        if torchify:
            images_list = [[torch.from_numpy(image) for image in images] for images in images_list]

181
182
183
184
        if numpify:
            # Numpy images are typically in channels last format
            images_list = [[image.transpose(1, 2, 0) for image in images] for images in images_list]

amyeroberts's avatar
amyeroberts committed
185
186
187
188
189
190
191
192
193
        return images_list


@require_torch
@require_vision
class Idefics2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = Idefics2ImageProcessor if is_vision_available() else None

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
194
        super().setUp()
amyeroberts's avatar
amyeroberts committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        self.image_processor_tester = Idefics2ImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_pad"))
        self.assertTrue(hasattr(image_processing, "do_image_splitting"))

    def test_call_numpy(self):
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = self.image_processing_class(**self.image_processor_dict)
            # create random numpy tensors
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
            for sample_images in image_inputs:
                for image in sample_images:
                    self.assertIsInstance(image, np.ndarray)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )

    def test_call_numpy_4_channels(self):
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processor_dict = self.image_processor_dict
            image_processor_dict["image_mean"] = [0.5, 0.5, 0.5, 0.5]
            image_processor_dict["image_std"] = [0.5, 0.5, 0.5, 0.5]
            image_processing = self.image_processing_class(**image_processor_dict)
            # create random numpy tensors
            self.image_processor_tester.num_channels = 4
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)

            for sample_images in image_inputs:
                for image in sample_images:
                    self.assertIsInstance(image, np.ndarray)

            # Test not batched input
            encoded_images = image_processing(
                image_inputs[0], input_data_format="channels_last", return_tensors="pt"
            ).pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processing(
                image_inputs, input_data_format="channels_last", return_tensors="pt"
            ).pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
amyeroberts's avatar
amyeroberts committed
266
267

    def test_call_pil(self):
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = self.image_processing_class(**self.image_processor_dict)
            # create random PIL images
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
            for images in image_inputs:
                for image in images:
                    self.assertIsInstance(image, Image.Image)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
amyeroberts's avatar
amyeroberts committed
288
289

    def test_call_pytorch(self):
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = self.image_processing_class(**self.image_processor_dict)
            # create random PyTorch tensors
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

            for images in image_inputs:
                for image in images:
                    self.assertIsInstance(image, torch.Tensor)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            self.assertEqual(
                tuple(encoded_images.shape),
                (self.image_processor_tester.batch_size, *expected_output_image_shape),
            )