test_image_processing_glpn.py 6.67 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import GLPNImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class GLPNImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size_divisor=32,
        do_rescale=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size_divisor = size_divisor
        self.do_rescale = do_rescale

59
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
60
61
62
63
64
65
        return {
            "do_resize": self.do_resize,
            "size_divisor": self.size_divisor,
            "do_rescale": self.do_rescale,
        }

66
67
68
    def expected_output_image_shape(self, images):
        if isinstance(images[0], Image.Image):
            width, height = images[0].size
69
70
        elif isinstance(images[0], np.ndarray):
            height, width = images[0].shape[0], images[0].shape[1]
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        else:
            height, width = images[0].shape[1], images[0].shape[2]

        height = height // self.size_divisor * self.size_divisor
        width = width // self.size_divisor * self.size_divisor

        return self.num_channels, height, width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            size_divisor=self.size_divisor,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
91
92
93

@require_torch
@require_vision
94
class GLPNImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
95
    image_processing_class = GLPNImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
96
97

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
98
        super().setUp()
99
        self.image_processor_tester = GLPNImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
100
101

    @property
102
103
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
104

105
106
107
108
109
110
    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size_divisor"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
NielsRogge's avatar
NielsRogge committed
111
112

    def test_call_pil(self):
113
114
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
115
        # create random PIL images
116
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
117
118
119
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

120
121
        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
122
123
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
124
125

    def test_call_numpy(self):
126
127
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
128
        # create random numpy tensors
129
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
130
131
132
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

133
134
        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
135
136
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
137
138

    def test_call_pytorch(self):
139
140
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
141
        # create random PyTorch tensors
142
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
143
144
145
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

146
147
        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
148
149
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
amyeroberts's avatar
amyeroberts committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

    def test_call_numpy_4_channels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        self.image_processing_class.num_channels = 4
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
        self.image_processing_class.num_channels = 3