test_image_processing_detr.py 29.2 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import pathlib
import unittest

20
21
import numpy as np

NielsRogge's avatar
NielsRogge committed
22
from transformers.testing_utils import require_torch, require_vision, slow
23
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
24

25
from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
26
27
28
29
30
31
32
33


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

34
    from transformers import DetrImageProcessor
NielsRogge's avatar
NielsRogge committed
35
36


37
class DetrImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
46
47
48
        size=None,
        do_rescale=True,
        rescale_factor=1 / 255,
NielsRogge's avatar
NielsRogge committed
49
50
51
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
52
        do_pad=True,
NielsRogge's avatar
NielsRogge committed
53
    ):
54
55
        # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
        size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
NielsRogge's avatar
NielsRogge committed
56
57
58
59
60
61
62
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
63
64
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
NielsRogge's avatar
NielsRogge committed
65
66
67
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
68
        self.do_pad = do_pad
NielsRogge's avatar
NielsRogge committed
69

70
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
71
72
73
        return {
            "do_resize": self.do_resize,
            "size": self.size,
74
75
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
NielsRogge's avatar
NielsRogge committed
76
77
78
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
79
            "do_pad": self.do_pad,
NielsRogge's avatar
NielsRogge committed
80
81
82
83
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
84
        This function computes the expected height and width when providing images to DetrImageProcessor,
NielsRogge's avatar
NielsRogge committed
85
86
87
88
89
90
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
91
92
            elif isinstance(image, np.ndarray):
                h, w = image.shape[0], image.shape[1]
NielsRogge's avatar
NielsRogge committed
93
94
95
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
96
97
                expected_height = int(self.size["shortest_edge"] * h / w)
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
98
            elif w > h:
99
100
                expected_height = self.size["shortest_edge"]
                expected_width = int(self.size["shortest_edge"] * w / h)
NielsRogge's avatar
NielsRogge committed
101
            else:
102
103
                expected_height = self.size["shortest_edge"]
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
104
105
106
107
108
109
110
111
112
113
114

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    def expected_output_image_shape(self, images):
        height, width = self.get_expected_values(images, batched=True)
        return self.num_channels, height, width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
130
131
132

@require_torch
@require_vision
133
class DetrImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
134
    image_processing_class = DetrImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
135
136

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
137
        super().setUp()
138
        self.image_processor_tester = DetrImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
139
140

    @property
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_pad"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
        self.assertEqual(image_processor.do_pad, True)

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
162
        )
163
164
        self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
        self.assertEqual(image_processor.do_pad, False)
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    def test_should_raise_if_annotation_format_invalid(self):
        image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()

        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            detection_target = json.loads(f.read())

        annotations = {"image_id": 39769, "annotations": detection_target}

        params = {
            "images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "annotations": annotations,
            "return_tensors": "pt",
        }

        image_processor_params = {**image_processor_dict, **{"format": "_INVALID_FORMAT_"}}
        image_processor = self.image_processing_class(**image_processor_params)

        with self.assertRaises(ValueError) as e:
            image_processor(**params)

        self.assertTrue(str(e.exception).startswith("_INVALID_FORMAT_ is not a valid AnnotationFormat"))

    def test_valid_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        params = {"image_id": 39769, "annotations": target}

        # encode them
        image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")

        # legal encodings (single image)
        _ = image_processing(images=image, annotations=params, return_tensors="pt")
        _ = image_processing(images=image, annotations=[params], return_tensors="pt")

        # legal encodings (batch of one image)
        _ = image_processing(images=[image], annotations=params, return_tensors="pt")
        _ = image_processing(images=[image], annotations=[params], return_tensors="pt")

        # legal encoding (batch of more than one image)
        n = 5
        _ = image_processing(images=[image] * n, annotations=[params] * n, return_tensors="pt")

        # example of an illegal encoding (missing the 'image_id' key)
        with self.assertRaises(ValueError) as e:
            image_processing(images=image, annotations={"annotations": target}, return_tensors="pt")

        self.assertTrue(str(e.exception).startswith("Invalid COCO detection annotations"))

        # example of an illegal encoding (unequal lengths of images and annotations)
        with self.assertRaises(ValueError) as e:
            image_processing(images=[image] * n, annotations=[params] * (n - 1), return_tensors="pt")

        self.assertTrue(str(e.exception) == "The number of images (5) and annotations (4) do not match.")

NielsRogge's avatar
NielsRogge committed
223
224
225
226
227
228
229
230
231
232
    @slow
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        # encode them
233
234
        image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
        encoding = image_processing(images=image, annotations=target, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
235
236
237
238
239
240

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
241
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
242
243
244

        # verify area
        expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
245
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
246
247
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
248
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
249
        expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
250
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
251
252
        # verify image_id
        expected_image_id = torch.tensor([39769])
253
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
254
255
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
256
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
257
258
        # verify class_labels
        expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
259
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
260
261
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
262
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
263
264
        # verify size
        expected_size = torch.tensor([800, 1066])
265
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
NielsRogge's avatar
NielsRogge committed
266
267
268
269
270
271
272
273
274
275
276
277
278

    @slow
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        # encode them
279
280
        image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic")
        encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
281
282
283
284
285
286

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
287
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
288
289
290

        # verify area
        expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
291
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
292
293
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
294
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
295
        expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
296
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
297
298
        # verify image_id
        expected_image_id = torch.tensor([39769])
299
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
300
301
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
302
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
303
304
        # verify class_labels
        expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
305
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
306
        # verify masks
307
        expected_masks_sum = 822873
308
        self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
NielsRogge's avatar
NielsRogge committed
309
310
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
311
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
312
313
        # verify size
        expected_size = torch.tensor([800, 1066])
314
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

    @slow
    def test_batched_coco_detection_annotations(self):
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        annotations_0 = {"image_id": 39769, "annotations": target}
        annotations_1 = {"image_id": 39769, "annotations": target}

        # Adjust the bounding boxes for the resized image
        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotations_1["annotations"])):
            coords = annotations_1["annotations"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotations_1["annotations"][i]["bbox"] = new_bbox

        images = [image_0, image_1]
        annotations = [annotations_0, annotations_1]

        image_processing = DetrImageProcessor()
        encoding = image_processing(
            images=images,
            annotations=annotations,
            return_segmentation_masks=True,
            return_tensors="pt",  # do_convert_annotations=True
        )

        # Check the pixel values have been padded
        postprocessed_height, postprocessed_width = 800, 1066
        expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        # Check the bounding boxes have been adjusted for padded images
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        expected_boxes_0 = torch.tensor(
            [
                [0.6879, 0.4609, 0.0755, 0.3691],
                [0.2118, 0.3359, 0.2601, 0.1566],
                [0.5011, 0.5000, 0.9979, 1.0000],
                [0.5010, 0.5020, 0.9979, 0.9959],
                [0.3284, 0.5944, 0.5884, 0.8112],
                [0.8394, 0.5445, 0.3213, 0.9110],
            ]
        )
        expected_boxes_1 = torch.tensor(
            [
                [0.4130, 0.2765, 0.0453, 0.2215],
                [0.1272, 0.2016, 0.1561, 0.0940],
                [0.3757, 0.4933, 0.7488, 0.9865],
                [0.3759, 0.5002, 0.7492, 0.9955],
                [0.1971, 0.5456, 0.3532, 0.8646],
                [0.5790, 0.4115, 0.3430, 0.7161],
            ]
        )
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))

        # Check the masks have also been padded
        self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
        self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

        # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
        # format and not in the range [0, 1]
        encoding = image_processing(
            images=images,
            annotations=annotations,
            return_segmentation_masks=True,
            do_convert_annotations=False,
            return_tensors="pt",
        )
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        # Convert to absolute coordinates
        unnormalized_boxes_0 = torch.vstack(
            [
                expected_boxes_0[:, 0] * postprocessed_width,
                expected_boxes_0[:, 1] * postprocessed_height,
                expected_boxes_0[:, 2] * postprocessed_width,
                expected_boxes_0[:, 3] * postprocessed_height,
            ]
        ).T
        unnormalized_boxes_1 = torch.vstack(
            [
                expected_boxes_1[:, 0] * postprocessed_width,
                expected_boxes_1[:, 1] * postprocessed_height,
                expected_boxes_1[:, 2] * postprocessed_width,
                expected_boxes_1[:, 3] * postprocessed_height,
            ]
        ).T
        # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
        expected_boxes_0 = torch.vstack(
            [
                unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
            ]
        ).T
        expected_boxes_1 = torch.vstack(
            [
                unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
            ]
        ).T
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))

    def test_batched_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
        annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotation_1["segments_info"])):
            coords = annotation_1["segments_info"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotation_1["segments_info"][i]["bbox"] = new_bbox

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        images = [image_0, image_1]
        annotations = [annotation_0, annotation_1]

        # encode them
        image_processing = DetrImageProcessor(format="coco_panoptic")
        encoding = image_processing(
            images=images,
            annotations=annotations,
            masks_path=masks_path,
            return_tensors="pt",
            return_segmentation_masks=True,
        )

        # Check the pixel values have been padded
        postprocessed_height, postprocessed_width = 800, 1066
        expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        # Check the bounding boxes have been adjusted for padded images
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        expected_boxes_0 = torch.tensor(
            [
                [0.2625, 0.5437, 0.4688, 0.8625],
                [0.7719, 0.4104, 0.4531, 0.7125],
                [0.5000, 0.4927, 0.9969, 0.9854],
                [0.1688, 0.2000, 0.2063, 0.0917],
                [0.5492, 0.2760, 0.0578, 0.2187],
                [0.4992, 0.4990, 0.9984, 0.9979],
            ]
        )
        expected_boxes_1 = torch.tensor(
            [
                [0.1576, 0.3262, 0.2814, 0.5175],
                [0.4634, 0.2463, 0.2720, 0.4275],
                [0.3002, 0.2956, 0.5985, 0.5913],
                [0.1013, 0.1200, 0.1238, 0.0550],
                [0.3297, 0.1656, 0.0347, 0.1312],
                [0.2997, 0.2994, 0.5994, 0.5987],
            ]
        )
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))

        # Check the masks have also been padded
        self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
        self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

        # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
        # format and not in the range [0, 1]
        encoding = image_processing(
            images=images,
            annotations=annotations,
            masks_path=masks_path,
            return_segmentation_masks=True,
            do_convert_annotations=False,
            return_tensors="pt",
        )
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        # Convert to absolute coordinates
        unnormalized_boxes_0 = torch.vstack(
            [
                expected_boxes_0[:, 0] * postprocessed_width,
                expected_boxes_0[:, 1] * postprocessed_height,
                expected_boxes_0[:, 2] * postprocessed_width,
                expected_boxes_0[:, 3] * postprocessed_height,
            ]
        ).T
        unnormalized_boxes_1 = torch.vstack(
            [
                expected_boxes_1[:, 0] * postprocessed_width,
                expected_boxes_1[:, 1] * postprocessed_height,
                expected_boxes_1[:, 2] * postprocessed_width,
                expected_boxes_1[:, 3] * postprocessed_height,
            ]
        ).T
        # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
        expected_boxes_0 = torch.vstack(
            [
                unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
            ]
        ).T
        expected_boxes_1 = torch.vstack(
            [
                unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
            ]
        ).T
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

    def test_max_width_max_height_resizing_and_pad_strategy(self):
        image_1 = torch.ones([200, 100, 3], dtype=torch.uint8)

        # do_pad=False, max_height=100, max_width=100, image=200x100 -> 100x50
        image_processor = DetrImageProcessor(
            size={"max_height": 100, "max_width": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 50]))

        # do_pad=False, max_height=300, max_width=100, image=200x100 -> 200x100
        image_processor = DetrImageProcessor(
            size={"max_height": 300, "max_width": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")

        # do_pad=True, max_height=100, max_width=100, image=200x100 -> 100x100
        image_processor = DetrImageProcessor(
            size={"max_height": 100, "max_width": 100}, do_pad=True, pad_size={"height": 100, "width": 100}
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 100]))

        # do_pad=True, max_height=300, max_width=100, image=200x100 -> 300x100
        image_processor = DetrImageProcessor(
            size={"max_height": 300, "max_width": 100},
            do_pad=True,
            pad_size={"height": 301, "width": 101},
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 301, 101]))

        ### Check for batch
        image_2 = torch.ones([100, 150, 3], dtype=torch.uint8)

        # do_pad=True, max_height=150, max_width=100, images=[200x100, 100x150] -> 150x100
        image_processor = DetrImageProcessor(
            size={"max_height": 150, "max_width": 100},
            do_pad=True,
            pad_size={"height": 150, "width": 100},
        )
        inputs = image_processor(images=[image_1, image_2], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([2, 3, 150, 100]))
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

    def test_longest_edge_shortest_edge_resizing_strategy(self):
        image_1 = torch.ones([958, 653, 3], dtype=torch.uint8)

        # max size is set; width < height;
        # do_pad=False, longest_edge=640, shortest_edge=640, image=958x653 -> 640x436
        image_processor = DetrImageProcessor(
            size={"longest_edge": 640, "shortest_edge": 640},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 640, 436]))

        image_2 = torch.ones([653, 958, 3], dtype=torch.uint8)
        # max size is set; height < width;
        # do_pad=False, longest_edge=640, shortest_edge=640, image=653x958 -> 436x640
        image_processor = DetrImageProcessor(
            size={"longest_edge": 640, "shortest_edge": 640},
            do_pad=False,
        )
        inputs = image_processor(images=[image_2], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 436, 640]))

        image_3 = torch.ones([100, 120, 3], dtype=torch.uint8)
        # max size is set; width == size; height > max_size;
        # do_pad=False, longest_edge=118, shortest_edge=100, image=120x100 -> 118x98
        image_processor = DetrImageProcessor(
            size={"longest_edge": 118, "shortest_edge": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_3], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 98, 118]))

        image_4 = torch.ones([128, 50, 3], dtype=torch.uint8)
        # max size is set; height == size; width < max_size;
        # do_pad=False, longest_edge=256, shortest_edge=50, image=50x128 -> 50x128
        image_processor = DetrImageProcessor(
            size={"longest_edge": 256, "shortest_edge": 50},
            do_pad=False,
        )
        inputs = image_processor(images=[image_4], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 128, 50]))

        image_5 = torch.ones([50, 50, 3], dtype=torch.uint8)
        # max size is set; height == width; width < max_size;
        # do_pad=False, longest_edge=117, shortest_edge=50, image=50x50 -> 50x50
        image_processor = DetrImageProcessor(
            size={"longest_edge": 117, "shortest_edge": 50},
            do_pad=False,
        )
        inputs = image_processor(images=[image_5], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 50, 50]))