translation.md 14.9 KB
Newer Older
Steven Liu's avatar
Steven Liu committed
1
2
3
4
5
6
7
8
9
10
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
11
12
13
14

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

Steven Liu's avatar
Steven Liu committed
15
16
17
18
-->

# Translation

19
20
[[open-in-colab]]

Steven Liu's avatar
Steven Liu committed
21
22
<Youtube id="1JvfrvZgi6c"/>

23
Translation converts a sequence of text from one language to another. It is one of several tasks you can formulate as a sequence-to-sequence problem, a powerful framework for returning some output from an input, like translation or summarization. Translation systems are commonly used for translation between different language texts, but it can also be used for speech or some combination in between like text-to-speech or speech-to-text.
Steven Liu's avatar
Steven Liu committed
24

25
26
This guide will show you how to:

27
1. Finetune [T5](https://huggingface.co/google-t5/t5-small) on the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset to translate English text to French.
28
2. Use your finetuned model for inference.
Steven Liu's avatar
Steven Liu committed
29
30
31

<Tip>

32
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/translation).
Steven Liu's avatar
Steven Liu committed
33
34
35

</Tip>

36
37
38
Before you begin, make sure you have all the necessary libraries installed:

```bash
39
pip install transformers datasets evaluate sacrebleu
40
41
42
43
44
45
46
47
48
49
```

We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

Steven Liu's avatar
Steven Liu committed
50
51
## Load OPUS Books dataset

52
Start by loading the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset from the 馃 Datasets library:
Steven Liu's avatar
Steven Liu committed
53
54
55
56
57
58
59

```py
>>> from datasets import load_dataset

>>> books = load_dataset("opus_books", "en-fr")
```

60
Split the dataset into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
Steven Liu's avatar
Steven Liu committed
61
62

```py
63
>>> books = books["train"].train_test_split(test_size=0.2)
Steven Liu's avatar
Steven Liu committed
64
65
66
67
68
69
70
71
72
73
74
```

Then take a look at an example:

```py
>>> books["train"][0]
{'id': '90560',
 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.',
  'fr': 'Mais ce plateau 茅lev茅 ne mesurait que quelques toises, et bient么t nous f没mes rentr茅s dans notre 茅l茅ment.'}}
```

75
`translation`: an English and French translation of the text.
Steven Liu's avatar
Steven Liu committed
76
77
78
79
80

## Preprocess

<Youtube id="XAR8jnZZuUs"/>

81
The next step is to load a T5 tokenizer to process the English-French language pairs:
Steven Liu's avatar
Steven Liu committed
82
83
84
85

```py
>>> from transformers import AutoTokenizer

86
>>> checkpoint = "google-t5/t5-small"
87
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
Steven Liu's avatar
Steven Liu committed
88
89
```

90
The preprocessing function you want to create needs to:
Steven Liu's avatar
Steven Liu committed
91
92

1. Prefix the input with a prompt so T5 knows this is a translation task. Some models capable of multiple NLP tasks require prompting for specific tasks.
93
2. Tokenize the input (English) and target (French) separately because you can't tokenize French text with a tokenizer pretrained on an English vocabulary.
Steven Liu's avatar
Steven Liu committed
94
95
96
97
98
99
100
101
102
103
104
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.

```py
>>> source_lang = "en"
>>> target_lang = "fr"
>>> prefix = "translate English to French: "


>>> def preprocess_function(examples):
...     inputs = [prefix + example[source_lang] for example in examples["translation"]]
...     targets = [example[target_lang] for example in examples["translation"]]
105
...     model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
Steven Liu's avatar
Steven Liu committed
106
107
108
...     return model_inputs
```

109
To apply the preprocessing function over the entire dataset, use 馃 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
Steven Liu's avatar
Steven Liu committed
110
111
112
113
114

```py
>>> tokenized_books = books.map(preprocess_function, batched=True)
```

115
Now create a batch of examples using [`DataCollatorForSeq2Seq`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length.
116

117
118
119
<frameworkcontent>
<pt>
```py
120
>>> from transformers import DataCollatorForSeq2Seq
121

122
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
123
124
125
126
127
```
</pt>
<tf>

```py
128
>>> from transformers import DataCollatorForSeq2Seq
129

130
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
131
132
133
134
```
</tf>
</frameworkcontent>

135
## Evaluate
Steven Liu's avatar
Steven Liu committed
136

137
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) metric (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
138

Steven Liu's avatar
Steven Liu committed
139
```py
140
>>> import evaluate
Steven Liu's avatar
Steven Liu committed
141

142
>>> metric = evaluate.load("sacrebleu")
Sylvain Gugger's avatar
Sylvain Gugger committed
143
```
144
145

Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the SacreBLEU score:
146

Sylvain Gugger's avatar
Sylvain Gugger committed
147
```py
148
>>> import numpy as np
Steven Liu's avatar
Steven Liu committed
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

>>> def postprocess_text(preds, labels):
...     preds = [pred.strip() for pred in preds]
...     labels = [[label.strip()] for label in labels]

...     return preds, labels


>>> def compute_metrics(eval_preds):
...     preds, labels = eval_preds
...     if isinstance(preds, tuple):
...         preds = preds[0]
...     decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

...     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
...     decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

...     decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

...     result = metric.compute(predictions=decoded_preds, references=decoded_labels)
...     result = {"bleu": result["score"]}

...     prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
...     result["gen_len"] = np.mean(prediction_lens)
...     result = {k: round(v, 4) for k, v in result.items()}
...     return result
Steven Liu's avatar
Steven Liu committed
176
```
177
178

Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
Steven Liu's avatar
Steven Liu committed
179

180
## Train
Steven Liu's avatar
Steven Liu committed
181

182
183
<frameworkcontent>
<pt>
Steven Liu's avatar
Steven Liu committed
184
185
<Tip>

186
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
Steven Liu's avatar
Steven Liu committed
187
188

</Tip>
189

190
191
192
193
194
You're ready to start training your model now! Load T5 with [`AutoModelForSeq2SeqLM`]:

```py
>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer

195
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
196
```
Steven Liu's avatar
Steven Liu committed
197
198
199

At this point, only three steps remain:

200
201
202
1. Define your training hyperparameters in [`Seq2SeqTrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the SacreBLEU metric and save the training checkpoint.
2. Pass the training arguments to [`Seq2SeqTrainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
Steven Liu's avatar
Steven Liu committed
203
204
205

```py
>>> training_args = Seq2SeqTrainingArguments(
206
...     output_dir="my_awesome_opus_books_model",
207
...     eval_strategy="epoch",
Steven Liu's avatar
Steven Liu committed
208
209
210
211
212
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
...     weight_decay=0.01,
...     save_total_limit=3,
213
214
...     num_train_epochs=2,
...     predict_with_generate=True,
Steven Liu's avatar
Steven Liu committed
215
...     fp16=True,
216
...     push_to_hub=True,
Steven Liu's avatar
Steven Liu committed
217
218
219
220
221
222
223
224
225
... )

>>> trainer = Seq2SeqTrainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_books["train"],
...     eval_dataset=tokenized_books["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
226
...     compute_metrics=compute_metrics,
Steven Liu's avatar
Steven Liu committed
227
228
229
... )

>>> trainer.train()
230
```
231
232
233
234
235

Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:

```py
>>> trainer.push_to_hub()
Steven Liu's avatar
Steven Liu committed
236
```
237
238
</pt>
<tf>
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
<Tip>

If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!

</Tip>
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:

```py
>>> from transformers import AdamWeightDecay

>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```

Then you can load T5 with [`TFAutoModelForSeq2SeqLM`]:

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

257
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
258
259
260
```

Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
Steven Liu's avatar
Steven Liu committed
261
262

```py
Matt's avatar
Matt committed
263
264
>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_books["train"],
Steven Liu's avatar
Steven Liu committed
265
266
267
268
269
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )

Matt's avatar
Matt committed
270
271
>>> tf_test_set = model.prepare_tf_dataset(
...     tokenized_books["test"],
Steven Liu's avatar
Steven Liu committed
272
273
274
275
276
277
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )
```

278
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to:
279

280
281
```py
>>> import tensorflow as tf
282

283
>>> model.compile(optimizer=optimizer)  # No loss argument!
284
285
```

amyeroberts's avatar
amyeroberts committed
286
The last two things to setup before you start training is to compute the SacreBLEU metric from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](../main_classes/keras_callbacks).
287

288
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
Steven Liu's avatar
Steven Liu committed
289
290

```py
291
>>> from transformers.keras_callbacks import KerasMetricCallback
Steven Liu's avatar
Steven Liu committed
292

293
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
Steven Liu's avatar
Steven Liu committed
294
295
```

296
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
Steven Liu's avatar
Steven Liu committed
297
298

```py
299
300
301
302
303
304
305
306
307
308
309
310
>>> from transformers.keras_callbacks import PushToHubCallback

>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_opus_books_model",
...     tokenizer=tokenizer,
... )
```

Then bundle your callbacks together:

```py
>>> callbacks = [metric_callback, push_to_hub_callback]
Steven Liu's avatar
Steven Liu committed
311
312
```

313
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
Steven Liu's avatar
Steven Liu committed
314
315

```py
316
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
Steven Liu's avatar
Steven Liu committed
317
```
318
319

Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
320
321
</tf>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
322
323
324

<Tip>

325
For a more in-depth example of how to finetune a model for translation, take a look at the corresponding
326
327
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
Steven Liu's avatar
Steven Liu committed
328

329
</Tip>
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Come up with some text you'd like to translate to another language. For T5, you need to prefix your input depending on the task you're working on. For translation from English to French, you should prefix your input as shown below:

```py
>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."
```

The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for translation with your model, and pass your text to it:

```py
>>> from transformers import pipeline

346
347
348
349
# Change `xx` to the language of the input and `yy` to the language of the desired output.
# Examples: "en" for English, "fr" for French, "de" for German, "es" for Spanish, "zh" for Chinese, etc; translation_en_to_fr translates English to French
# You can view all the lists of languages here - https://huggingface.co/languages
>>> translator = pipeline("translation_xx_to_yy", model="my_awesome_opus_books_model")
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bact茅ries azotantes.'}]
```

You can also manually replicate the results of the `pipeline` if you'd like:

<frameworkcontent>
<pt>
Tokenize the text and return the `input_ids` as PyTorch tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
```

amyeroberts's avatar
amyeroberts committed
367
Use the [`~transformers.generation_utils.GenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](../main_classes/text_generation) API.
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

```py
>>> from transformers import AutoModelForSeq2SeqLM

>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lign茅es partagent des ressources avec des bact茅ries enfixant l'azote.'
```
</pt>
<tf>
Tokenize the text and return the `input_ids` as TensorFlow tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```

amyeroberts's avatar
amyeroberts committed
393
Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](../main_classes/text_generation) API.
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bact茅ries fixatrices d'azote.'
```
</tf>
amyeroberts's avatar
amyeroberts committed
409
</frameworkcontent>