configuration_pix2struct.py 18.1 KB
Newer Older
Younes Belkada's avatar
Younes Belkada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Pix2Struct model configuration"""

import copy
import os
from typing import Union

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "google/pix2struct-textcaps-base": (
        "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"
    ),
}


class Pix2StructTextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
    a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
38
39
    configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
    the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Younes Belkada's avatar
Younes Belkada committed
40
41
42
43
44
45
46

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50244):
            Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
47
            represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
Younes Belkada's avatar
Younes Belkada committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        d_kv (`int`, *optional*, defaults to 64):
            Dimensionality of the key, query, value projections in each attention head.
        d_ff (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance of the longer sequences for the bucket separation.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string).
        decoder_start_token_id (`int`, *optional*, defaults to 0):
            The id of the `decoder_start_token_id` token.
        use_cache (`bool`, *optional*, defaults to `False`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the `padding` token.
        eos_token_id (`int`, *optional*, defaults to 1):
            The id of the `end-of-sequence` token.

    Example:

    ```python
    >>> from transformers import Pix2StructTextConfig, Pix2StructTextModel

85
    >>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
Younes Belkada's avatar
Younes Belkada committed
86
87
    >>> configuration = Pix2StructTextConfig()

88
    >>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
Younes Belkada's avatar
Younes Belkada committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    >>> model = Pix2StructTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "pix2struct_text_model"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {
        "hidden_size": "hidden_size",
        "num_attention_heads": "num_heads",
        "num_hidden_layers": "num_layers",
    }

    def __init__(
        self,
        vocab_size=50244,
        hidden_size=768,
        d_kv=64,
        d_ff=2048,
        num_layers=12,
        num_heads=12,
        relative_attention_num_buckets=32,
        relative_attention_max_distance=128,
        dropout_rate=0.1,
        layer_norm_epsilon=1e-6,
        initializer_factor=1.0,
        dense_act_fn="gelu_new",
        decoder_start_token_id=0,
        use_cache=False,
        pad_token_id=0,
        eos_token_id=1,
120
        tie_word_embeddings=False,
Younes Belkada's avatar
Younes Belkada committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.d_kv = d_kv
        self.d_ff = d_ff
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.relative_attention_max_distance = relative_attention_max_distance
        self.dropout_rate = dropout_rate
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_factor = initializer_factor
        self.use_cache = use_cache

        self.eos_token_id = eos_token_id
        self.decoder_start_token_id = decoder_start_token_id

        # for backwards compatibility
        self.dense_act_fn = dense_act_fn

        super().__init__(
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            decoder_start_token_id=decoder_start_token_id,
146
            tie_word_embeddings=tie_word_embeddings,
Younes Belkada's avatar
Younes Belkada committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            **kwargs,
        )

    @classmethod
    def from_pretrained(
        cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> "PretrainedConfig":
        config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)

        # get the text config dict if we are loading from Pix2StructConfig
        if config_dict.get("model_type") == "pix2struct":
            config_dict = config_dict["text_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class Pix2StructVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
172
    instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
Younes Belkada's avatar
Younes Belkada committed
173
    Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
174
    [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Younes Belkada's avatar
Younes Belkada committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        patch_embed_hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the input patch_embedding layer in the Transformer encoder.
        d_ff (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        d_kv (`int`, *optional*, defaults to 64):
            Dimensionality of the key, query, value projections per attention head.
        projection_dim (`int`, *optional*, defaults to 768):
            Dimensionality of the projection layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels of the input images.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        dropout_rate (`float`, *optional*, defaults to 0.0):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 1e-10):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float``, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        seq_len (`int`, *optional*, defaults to 4096):
            Maximum sequence length (here number of patches) supported by the model.
        layer_norm_bias (`bool`, *optional*, defaults to `False`):
            Whether or not to add a bias to the layer normalization layers.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance (in tokens) to use for each attention layer.

    Example:

    ```python
    >>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel

226
    >>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
Younes Belkada's avatar
Younes Belkada committed
227
228
    >>> configuration = Pix2StructVisionConfig()

229
    >>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
Younes Belkada's avatar
Younes Belkada committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    >>> model = Pix2StructVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "pix2struct_vision_model"

    def __init__(
        self,
        hidden_size=768,
        patch_embed_hidden_size=768,
        d_ff=2048,
        d_kv=64,
        projection_dim=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        patch_size=16,
        dense_act_fn="gelu_new",
        layer_norm_eps=1e-6,
        dropout_rate=0.0,
        attention_dropout=0.0,
        initializer_range=1e-10,
        initializer_factor=1.0,
        seq_len=4096,
        layer_norm_bias=False,
        relative_attention_num_buckets=32,
        relative_attention_max_distance=128,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.patch_embed_hidden_size = patch_embed_hidden_size
        self.d_ff = d_ff
        self.projection_dim = projection_dim
        self.dropout_rate = dropout_rate
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.dense_act_fn = dense_act_fn
        self.seq_len = seq_len
        self.layer_norm_bias = layer_norm_bias
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.relative_attention_max_distance = relative_attention_max_distance
        self.d_kv = d_kv

    @classmethod
    def from_pretrained(
        cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> "PretrainedConfig":
        config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)

        # get the vision config dict if we are loading from Pix2StructConfig
        if config_dict.get("model_type") == "pix2struct":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class Pix2StructConfig(PretrainedConfig):
    r"""
304
305
306
307
308
    [`Pix2StructConfig`] is the configuration class to store the configuration of a
    [`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
    arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
    yield a similar configuration to that of the Pix2Struct-base
    [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Younes Belkada's avatar
Younes Belkada committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
        initializer_factor (`float`, *optional*, defaults to 1.0):
            Factor to multiply the initialization range with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        is_vqa (`bool`, *optional*, defaults to `False`):
            Whether the model has been fine-tuned for VQA or not.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
330
    >>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration
Younes Belkada's avatar
Younes Belkada committed
331

332
    >>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
Younes Belkada's avatar
Younes Belkada committed
333
334
    >>> configuration = Pix2StructConfig()

335
336
    >>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
    >>> model = Pix2StructForConditionalGeneration(configuration)
Younes Belkada's avatar
Younes Belkada committed
337
338
339
340
341
342

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig

343
    >>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
Younes Belkada's avatar
Younes Belkada committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    >>> config_text = Pix2StructTextConfig()
    >>> config_vision = Pix2StructVisionConfig()

    >>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
    ```"""

    model_type = "pix2struct"
    is_composition = True

    def __init__(
        self,
        text_config=None,
        vision_config=None,
        initializer_factor=1.0,
        initializer_range=0.02,
        is_vqa=False,
        **kwargs,
    ):
        super().__init__(**kwargs)

        if text_config is None:
            text_config = {}
            logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.")

        if vision_config is None:
            vision_config = {}
            logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.")

        self.text_config = Pix2StructTextConfig(**text_config)
        self.vision_config = Pix2StructVisionConfig(**vision_config)

        self.text_config.encoder_hidden_size = self.vision_config.hidden_size
        self.decoder_start_token_id = self.text_config.decoder_start_token_id
        self.pad_token_id = self.text_config.pad_token_id

        self.initializer_factor = initializer_factor
        self.initializer_range = initializer_range

        self.text_config.initializer_range = self.initializer_range
        self.vision_config.initializer_range = self.initializer_range

        self.is_vqa = is_vqa

    @classmethod
    def from_text_vision_configs(
        cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs
    ):
        r"""
        Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
        vision model configuration.

        Returns:
            [`Pix2StructConfig`]: An instance of a configuration object
        """

        return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)
        output["text_config"] = self.text_config.to_dict()
        output["vision_config"] = self.vision_config.to_dict()
        output["model_type"] = self.__class__.model_type
        return output