"...lm-evaluation-harness.git" did not exist on "6fc2ac4913addc3750abc9423b344af6c00f8d33"
test_image_processing_deit.py 7.79 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

Yih-Dar's avatar
Yih-Dar committed
24
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import DeiTFeatureExtractor


class DeiTFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
NielsRogge's avatar
NielsRogge committed
47
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
48
        crop_size=None,
NielsRogge's avatar
NielsRogge committed
49
50
51
52
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
53
54
55
        size = size if size is not None else {"height": 20, "width": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}

NielsRogge's avatar
NielsRogge committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
        }


@require_torch
@require_vision
class DeiTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = DeiTFeatureExtractor if is_vision_available() else None
87
    test_cast_dtype = True
NielsRogge's avatar
NielsRogge committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    def setUp(self):
        self.feature_extract_tester = DeiTFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
        self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
        self.assertTrue(hasattr(feature_extractor, "center_crop"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))

106
107
108
109
110
111
112
113
114
    def test_feat_extract_from_dict_with_kwargs(self):
        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict)
        self.assertEqual(feature_extractor.size, {"height": 20, "width": 20})
        self.assertEqual(feature_extractor.crop_size, {"height": 18, "width": 18})

        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=42, crop_size=84)
        self.assertEqual(feature_extractor.size, {"height": 42, "width": 42})
        self.assertEqual(feature_extractor.crop_size, {"height": 84, "width": 84})

NielsRogge's avatar
NielsRogge committed
115
116
117
118
119
120
121
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
NielsRogge's avatar
NielsRogge committed
122
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
123
124
125
126
127
128
129
130
131
132
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
133
134
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
135
136
137
138
139
140
141
142
143
144
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
145
146
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
147
148
149
150
151
152
153
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
NielsRogge's avatar
NielsRogge committed
154
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
155
156
157
158
159
160
161
162
163
164
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
165
166
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
167
168
169
170
171
172
173
174
175
176
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
177
178
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
179
180
181
182
183
184
185
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
NielsRogge's avatar
NielsRogge committed
186
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
187
188
189
190
191
192
193
194
195
196
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
197
198
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
199
200
201
202
203
204
205
206
207
208
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
209
210
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
211
212
            ),
        )