test_modeling_auto.py 16.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import sys
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20
from pathlib import Path
thomwolf's avatar
thomwolf committed
21

22
23
from transformers import BertConfig, is_torch_available
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
24
from transformers.testing_utils import (
25
    DUMMY_UNKNOWN_IDENTIFIER,
26
    SMALL_MODEL_IDENTIFIER,
27
    RequestCounter,
28
29
30
31
    require_scatter,
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
32

33
from ..bert.test_modeling_bert import BertModelTester
34

35

Yih-Dar's avatar
Yih-Dar committed
36
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
37
38
39
40

from test_module.custom_configuration import CustomConfig  # noqa E402


41
if is_torch_available():
42
43
    import torch

44
    from test_module.custom_modeling import CustomModel
45
46
47
    from transformers import (
        AutoConfig,
        AutoModel,
48
49
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
50
51
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
52
        AutoModelForSeq2SeqLM,
53
        AutoModelForSequenceClassification,
54
        AutoModelForTableQuestionAnswering,
55
        AutoModelForTokenClassification,
56
57
58
59
60
        AutoModelWithLMHead,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
61
        BertForTokenClassification,
62
        BertModel,
63
64
        FunnelBaseModel,
        FunnelModel,
65
66
67
68
69
        GPT2Config,
        GPT2LMHeadModel,
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
70
71
        TapasConfig,
        TapasForQuestionAnswering,
72
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
73
    from transformers.models.auto.modeling_auto import (
74
75
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
76
77
78
79
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
80
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
81
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
82
83
84
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
85
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
86
87


88
@require_torch
thomwolf's avatar
thomwolf committed
89
class AutoModelTest(unittest.TestCase):
90
    @slow
thomwolf's avatar
thomwolf committed
91
    def test_model_from_pretrained(self):
92
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
93
94
95
96
97
98
99
100
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
Lysandre Debut's avatar
Lysandre Debut committed
101
102
103
104
105

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
106

thomwolf's avatar
thomwolf committed
107
108
    @slow
    def test_model_for_pretraining_from_pretrained(self):
109
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
110
111
112
113
114
115
116
117
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
118
119
120
            # Only one value should not be initialized and in the missing keys.
            missing_keys = loading_info.pop("missing_keys")
            self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys)
121
            for key, value in loading_info.items():
122
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
123

124
    @slow
LysandreJik's avatar
LysandreJik committed
125
    def test_lmhead_model_from_pretrained(self):
126
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
127
128
129
130
131
132
133
134
135
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

172
    @slow
LysandreJik's avatar
LysandreJik committed
173
    def test_sequence_classification_model_from_pretrained(self):
174
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
175
176
177
178
179
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
180
181
182
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
183
184
185
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

186
    @slow
LysandreJik's avatar
LysandreJik committed
187
    def test_question_answering_model_from_pretrained(self):
188
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
189
190
191
192
193
194
195
196
197
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    @slow
    @require_scatter
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

213
214
    @slow
    def test_token_classification_model_from_pretrained(self):
215
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
216
217
218
219
220
221
222
223
224
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
225
226
227
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
228
229
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
230
231

    def test_from_identifier_from_model_type(self):
232
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
233
        self.assertIsInstance(model, RobertaForMaskedLM)
234
235
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

252
    def test_from_pretrained_dynamic_model_local(self):
253
254
255
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoModel.register(CustomConfig, CustomModel)
256

257
258
            config = CustomConfig(hidden_size=32)
            model = CustomModel(config)
259

260
261
262
263
264
265
266
267
268
269
270
271
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)

                new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.equal(p1, p2))

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[CustomConfig]
272

273
274
275
276
277
278
279
280
    def test_from_pretrained_dynamic_model_distant(self):
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

281
    def test_new_model_registration(self):
282
        AutoConfig.register("custom", CustomConfig)
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

        auto_classes = [
            AutoModel,
            AutoModelForCausalLM,
            AutoModelForMaskedLM,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSequenceClassification,
            AutoModelForTokenClassification,
        ]

        try:
            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
299
300
                        auto_class.register(BertConfig, CustomModel)
                    auto_class.register(CustomConfig, CustomModel)
301
302
303
304
305
306
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, BertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
307
                    config = CustomConfig(**tiny_config.to_dict())
308
                    model = auto_class.from_config(config)
309
                    self.assertIsInstance(model, CustomModel)
310
311
312
313

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
314
315
                        # The model is a CustomModel but from the new dynamically imported class.
                        self.assertIsInstance(new_model, CustomModel)
316
317

        finally:
318
319
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
320
321
322
323
324
325
326
327
328
            for mapping in (
                MODEL_MAPPING,
                MODEL_FOR_PRETRAINING_MAPPING,
                MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_MASKED_LM_MAPPING,
            ):
329
330
                if CustomConfig in mapping._extra_content:
                    del mapping._extra_content[CustomConfig]
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
        ):
            _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_tf_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only")

    def test_model_from_flax_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

    def test_cached_model_has_minimum_calls_to_head(self):
        # Make sure we have cached the model.
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
            self.assertEqual(counter.head_request_count, 1)
            self.assertEqual(counter.other_request_count, 0)

        # With a sharded checkpoint
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
            self.assertEqual(counter.get_request_count, 0)
            # There is no pytorch_model.bin so we still get one call for this one.
            self.assertEqual(counter.head_request_count, 2)
            self.assertEqual(counter.other_request_count, 0)