test_modeling_gemma2.py 5.06 KB
Newer Older
Arthur's avatar
Arthur committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Gemma2 model."""

import unittest

from transformers import AutoModelForCausalLM, AutoTokenizer, Gemma2Config, is_torch_available
from transformers.testing_utils import (
    require_read_token,
    require_torch,
    require_torch_gpu,
    slow,
    torch_device,
)

from ...models.gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
from ...test_configuration_common import ConfigTester


if is_torch_available():
    import torch

    from transformers import (
        Gemma2ForCausalLM,
        Gemma2ForSequenceClassification,
        Gemma2ForTokenClassification,
        Gemma2Model,
    )


class Gemma2ModelTester(GemmaModelTester):
    config_class = Gemma2Config
    model_class = Gemma2Model
    for_causal_lm_class = Gemma2ForCausalLM
    for_sequence_class = Gemma2ForSequenceClassification
    for_token_class = Gemma2ForTokenClassification


@require_torch
class Gemma2ModelTest(GemmaModelTest, unittest.TestCase):
    all_model_classes = (
        (Gemma2Model, Gemma2ForCausalLM, Gemma2ForSequenceClassification, Gemma2ForTokenClassification)
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = ()
    pipeline_model_mapping = (
        {
            "feature-extraction": Gemma2Model,
            "text-classification": Gemma2ForSequenceClassification,
            "token-classification": Gemma2ForTokenClassification,
            "text-generation": Gemma2ForCausalLM,
            "zero-shot": Gemma2ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_headmasking = False
    test_pruning = False
    _is_stateful = True
    model_split_percents = [0.5, 0.6]
    _torch_compile_test_ckpt = "google/gemma-2-9b"

    def setUp(self):
        self.model_tester = Gemma2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Gemma2Config, hidden_size=37)

    @unittest.skip("Eager and SDPA do not produce the same outputs, thus this test fails")
    def test_model_outputs_equivalence(self, **kwargs):
        pass

    @unittest.skip("Gemma2's outputs are expected to be different")
    def test_eager_matches_sdpa_inference(self):
        pass


@slow
@require_torch_gpu
class Gemma2IntegrationTest(unittest.TestCase):
    input_text = ["Hello I am doing", "Hi today"]
    # This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
    # Depending on the hardware we get different logits / generations
    cuda_compute_capability_major_version = None

    @classmethod
    def setUpClass(cls):
        if is_torch_available() and torch.cuda.is_available():
            # 8 is for A100 / A10 and 7 for T4
            cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]

    @require_read_token
    def test_model_2b_bf16(self):
        model_id = "google/gemma-2-9b"
        EXPECTED_TEXTS = [
            "<bos>Hello I am doing a project for a class and I am trying to use the <code><a-image></code>",
            "<pad><pad><bos>Hi today. So, I'm going to show you how to do a problem from the textbook. So",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
            torch_device
        )

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

    @require_read_token
    def test_model_2b_fp16(self):
        model_id = "google/gemma-2-9b"
        EXPECTED_TEXTS = [
            "<bos>Hello I am doing a project on the effect of the temperature on the rate of a reaction. I am using a ",
            "<pad><pad><bos>Hi today I'm going to be talking about the 1000-4000-",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
            torch_device
        )

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)