run_bert_swag.py 23.8 KB
Newer Older
Grégory Châtel's avatar
Grégory Châtel committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
Grégory Châtel's avatar
Grégory Châtel committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

tseretelitornike's avatar
tseretelitornike committed
18
19
from __future__ import absolute_import

thomwolf's avatar
thomwolf committed
20
21
import argparse
import csv
22
import logging
23
24
import os
import random
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
27
28
29

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
30
31
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
32
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
33
from tqdm import tqdm, trange
34

thomwolf's avatar
thomwolf committed
35
36
37
38
from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_transformers.modeling_bert import BertForMultipleChoice, BertConfig
from pytorch_transformers.optimization import BertAdam, WarmupLinearSchedule
from pytorch_transformers.tokenization_bert import BertTokenizer
39
40
41
42
43
44

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

45

Grégory Châtel's avatar
Grégory Châtel committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
class SwagExample(object):
    """A single training/test example for the SWAG dataset."""
    def __init__(self,
                 swag_id,
                 context_sentence,
                 start_ending,
                 ending_0,
                 ending_1,
                 ending_2,
                 ending_3,
                 label = None):
        self.swag_id = swag_id
        self.context_sentence = context_sentence
        self.start_ending = start_ending
60
61
62
63
64
65
        self.endings = [
            ending_0,
            ending_1,
            ending_2,
            ending_3,
        ]
Grégory Châtel's avatar
Grégory Châtel committed
66
67
68
69
70
71
72
        self.label = label

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        l = [
thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
79
            "swag_id: {}".format(self.swag_id),
            "context_sentence: {}".format(self.context_sentence),
            "start_ending: {}".format(self.start_ending),
            "ending_0: {}".format(self.endings[0]),
            "ending_1: {}".format(self.endings[1]),
            "ending_2: {}".format(self.endings[2]),
            "ending_3: {}".format(self.endings[3]),
Grégory Châtel's avatar
Grégory Châtel committed
80
81
82
        ]

        if self.label is not None:
thomwolf's avatar
thomwolf committed
83
            l.append("label: {}".format(self.label))
84
85
86
87
88
89
90

        return ", ".join(l)


class InputFeatures(object):
    def __init__(self,
                 example_id,
91
92
                 choices_features,
                 label
93

94
95
    ):
        self.example_id = example_id
96
97
98
99
100
101
102
103
        self.choices_features = [
            {
                'input_ids': input_ids,
                'input_mask': input_mask,
                'segment_ids': segment_ids
            }
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
104
        self.label = label
Grégory Châtel's avatar
Grégory Châtel committed
105

106

107
def read_swag_examples(input_file, is_training):
108
    with open(input_file, 'r', encoding='utf-8') as f:
109
        reader = csv.reader(f)
thomwolf's avatar
thomwolf committed
110
111
112
113
114
        lines = []
        for line in reader:
            if sys.version_info[0] == 2:
                line = list(unicode(cell, 'utf-8') for cell in line)
            lines.append(line)
115

116
    if is_training and lines[0][-1] != 'label':
117
        raise ValueError(
118
119
            "For training, the input file must contain a label column."
        )
Grégory Châtel's avatar
Grégory Châtel committed
120

121
122
    examples = [
        SwagExample(
123
124
125
            swag_id = line[2],
            context_sentence = line[4],
            start_ending = line[5], # in the swag dataset, the
126
127
                                         # common beginning of each
                                         # choice is stored in "sent2".
128
129
130
131
132
133
            ending_0 = line[7],
            ending_1 = line[8],
            ending_2 = line[9],
            ending_3 = line[10],
            label = int(line[11]) if is_training else None
        ) for line in lines[1:] # we skip the line with the column names
134
135
136
137
    ]

    return examples

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 is_training):
    """Loads a data file into a list of `InputBatch`s."""

    # Swag is a multiple choice task. To perform this task using Bert,
    # we will use the formatting proposed in "Improving Language
    # Understanding by Generative Pre-Training" and suggested by
    # @jacobdevlin-google in this issue
    # https://github.com/google-research/bert/issues/38.
    #
    # Each choice will correspond to a sample on which we run the
    # inference. For a given Swag example, we will create the 4
    # following inputs:
    # - [CLS] context [SEP] choice_1 [SEP]
    # - [CLS] context [SEP] choice_2 [SEP]
    # - [CLS] context [SEP] choice_3 [SEP]
    # - [CLS] context [SEP] choice_4 [SEP]
    # The model will output a single value for each input. To get the
    # final decision of the model, we will run a softmax over these 4
    # outputs.
    features = []
    for example_index, example in enumerate(examples):
        context_tokens = tokenizer.tokenize(example.context_sentence)
        start_ending_tokens = tokenizer.tokenize(example.start_ending)

        choices_features = []
        for ending_index, ending in enumerate(example.endings):
            # We create a copy of the context tokens in order to be
            # able to shrink it according to ending_tokens
            context_tokens_choice = context_tokens[:]
            ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
            # Modifies `context_tokens_choice` and `ending_tokens` in
            # place so that the total length is less than the
            # specified length.  Account for [CLS], [SEP], [SEP] with
            # "- 3"
173
            _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

            tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
            segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding = [0] * (max_seq_length - len(input_ids))
            input_ids += padding
            input_mask += padding
            segment_ids += padding

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            choices_features.append((tokens, input_ids, input_mask, segment_ids))

        label = example.label
        if example_index < 5:
            logger.info("*** Example ***")
thomwolf's avatar
thomwolf committed
196
            logger.info("swag_id: {}".format(example.swag_id))
197
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
thomwolf's avatar
thomwolf committed
198
199
200
201
202
                logger.info("choice: {}".format(choice_idx))
                logger.info("tokens: {}".format(' '.join(tokens)))
                logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
                logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
203
            if is_training:
thomwolf's avatar
thomwolf committed
204
                logger.info("label: {}".format(label))
205

206
207
208
209
210
211
212
        features.append(
            InputFeatures(
                example_id = example.swag_id,
                choices_features = choices_features,
                label = label
            )
        )
213

214
    return features
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

def select_field(features, field):
    return [
        [
            choice[field]
            for choice in feature.choices_features
        ]
        for feature in features
    ]

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .csv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
256
257
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
thomwolf's avatar
thomwolf committed
320
321
322
323
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
324
325
326
327
328
329
330

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
thomwolf's avatar
thomwolf committed
331
        torch.cuda.set_device(args.local_rank)
332
333
334
335
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
336
337
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
338
339
340
341
342

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

343
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
344
345
346
347
348
349
350
351
352
353
354
355

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
356
357
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
358
359
360
361
362

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    # Prepare model
    model = BertForMultipleChoice.from_pretrained(args.bert_model,
363
        cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)),
364
        num_choices=4)
365
366
367
368
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
369
370
371
372
373
374
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
375
376
377
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

378
    if args.do_train:
samuel.broscheit's avatar
samuel.broscheit committed
379
380
381

        # Prepare data loader

382
        train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
383
384
385
386
387
388
389
390
391
392
393
394
395
        train_features = convert_examples_to_features(
            train_examples, tokenizer, args.max_seq_length, True)
        all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

396
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
397
398
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
399

samuel.broscheit's avatar
samuel.broscheit committed
400
        # Prepare optimizer
thomwolf's avatar
thomwolf committed
401

402
403
404
405
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
406
        param_optimizer = [n for n in param_optimizer]
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
430
        else:
431
432
433
434
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
435

samuel.broscheit's avatar
samuel.broscheit committed
436
437
        global_step = 0

438
439
440
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
441
        logger.info("  Num steps = %d", num_train_optimization_steps)
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
459
460
461
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
462
463
464
465
466

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
467
                if (step + 1) % args.gradient_accumulation_steps == 0:
468
469
470
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
471
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
472
473
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
thomwolf's avatar
thomwolf committed
474
475
                    optimizer.step()
                    optimizer.zero_grad()
476
477
                    global_step += 1

478

479
    if args.do_train:
480
        # Save a trained model, configuration and tokenizer
481
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
482
483

        # If we save using the predefined names, we can load using `from_pretrained`
484
485
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
486
487
488

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
489
        tokenizer.save_vocabulary(args.output_dir)
490

491
492
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForMultipleChoice.from_pretrained(args.output_dir, num_choices=4)
493
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
494
495
    else:
        model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4)
496
497
    model.to(device)

498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True)
        eval_features = convert_examples_to_features(
            eval_examples, tokenizer, args.max_seq_length, True)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
Yuqiang Xie's avatar
Yuqiang Xie committed
518
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
544
                  'loss': tr_loss/global_step}
545
546
547
548
549
550
551
552

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

553

554
if __name__ == "__main__":
555
    main()