run_bert_extract_features.py 11.9 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
"""Extract pre-computed feature vectors from a PyTorch BERT model."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

thomwolf's avatar
thomwolf committed
21
import argparse
22
import collections
thomwolf's avatar
thomwolf committed
23
import logging
24
25
26
import json
import re

thomwolf's avatar
thomwolf committed
27
import torch
thomwolf's avatar
thomwolf committed
28
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
thomwolf's avatar
thomwolf committed
29
30
from torch.utils.data.distributed import DistributedSampler

thomwolf's avatar
thomwolf committed
31
32
from pytorch_transformers.tokenization_bert import BertTokenizer
from pytorch_transformers.modeling_bert import BertModel
thomwolf's avatar
thomwolf committed
33
34
35
36
37

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


class InputExample(object):

    def __init__(self, unique_id, text_a, text_b):
        self.unique_id = unique_id
        self.text_a = text_a
        self.text_b = text_b


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
        self.unique_id = unique_id
        self.tokens = tokens
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.input_type_ids = input_type_ids


def convert_examples_to_features(examples, seq_length, tokenizer):
60
    """Loads a data file into a list of `InputFeature`s."""
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > seq_length - 2:
                tokens_a = tokens_a[0:(seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
thomwolf's avatar
thomwolf committed
83
        #  type_ids:   0   0  0    0    0     0      0   0    1  1  1   1  1   1
84
85
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
thomwolf's avatar
thomwolf committed
86
        #  type_ids:   0   0   0   0  0     0   0
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        input_type_ids = []
        tokens.append("[CLS]")
        input_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            input_type_ids.append(0)
        tokens.append("[SEP]")
        input_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                input_type_ids.append(1)
            tokens.append("[SEP]")
            input_type_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < seq_length:
            input_ids.append(0)
            input_mask.append(0)
            input_type_ids.append(0)

        assert len(input_ids) == seq_length
        assert len(input_mask) == seq_length
        assert len(input_type_ids) == seq_length

        if ex_index < 5:
thomwolf's avatar
thomwolf committed
132
133
134
135
136
137
            logger.info("*** Example ***")
            logger.info("unique_id: %s" % (example.unique_id))
            logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))

        features.append(
            InputFeatures(
                unique_id=example.unique_id,
                tokens=tokens,
                input_ids=input_ids,
                input_mask=input_mask,
                input_type_ids=input_type_ids))
    return features


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()


def read_examples(input_file):
    """Read a list of `InputExample`s from an input file."""
    examples = []
    unique_id = 0
171
    with open(input_file, "r", encoding='utf-8') as reader:
172
        while True:
173
            line = reader.readline()
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            if not line:
                break
            line = line.strip()
            text_a = None
            text_b = None
            m = re.match(r"^(.*) \|\|\| (.*)$", line)
            if m is None:
                text_a = line
            else:
                text_a = m.group(1)
                text_b = m.group(2)
            examples.append(
                InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
            unique_id += 1
    return examples


thomwolf's avatar
thomwolf committed
191
def main():
192
193
194
195
196
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--input_file", default=None, type=str, required=True)
    parser.add_argument("--output_file", default=None, type=str, required=True)
thomwolf's avatar
thomwolf committed
197
198
199
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
200
201

    ## Other parameters
202
    parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
203
204
205
206
207
208
209
210
211
    parser.add_argument("--layers", default="-1,-2,-3,-4", type=str)
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences longer "
                            "than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--batch_size", default=32, type=int, help="Batch size for predictions.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help = "local_rank for distributed training on gpus")
212
213
214
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
215
216
217

    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
218
219
220
221
222
223
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
224
225
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
226
    logger.info("device: {} n_gpu: {} distributed training: {}".format(device, n_gpu, bool(args.local_rank != -1)))
227
228
229

    layer_indexes = [int(x) for x in args.layers.split(",")]

thomwolf's avatar
thomwolf committed
230
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
231
232
233
234
235
236
237
238
239
240

    examples = read_examples(args.input_file)

    features = convert_examples_to_features(
        examples=examples, seq_length=args.max_seq_length, tokenizer=tokenizer)

    unique_id_to_feature = {}
    for feature in features:
        unique_id_to_feature[feature.unique_id] = feature

thomwolf's avatar
thomwolf committed
241
    model = BertModel.from_pretrained(args.bert_model)
thomwolf's avatar
thomwolf committed
242
    model.to(device)
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
249
250
251
252
253

    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)

thomwolf's avatar
thomwolf committed
254
    eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index)
thomwolf's avatar
thomwolf committed
255
256
257
258
259
260
261
262
    if args.local_rank == -1:
        eval_sampler = SequentialSampler(eval_data)
    else:
        eval_sampler = DistributedSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)

    model.eval()
    with open(args.output_file, "w", encoding='utf-8') as writer:
thomwolf's avatar
thomwolf committed
263
        for input_ids, input_mask, example_indices in eval_dataloader:
thomwolf's avatar
thomwolf committed
264
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
265
            input_mask = input_mask.to(device)
thomwolf's avatar
thomwolf committed
266

thomwolf's avatar
thomwolf committed
267
            all_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_mask)
thomwolf's avatar
thomwolf committed
268
            all_encoder_layers = all_encoder_layers
thomwolf's avatar
thomwolf committed
269

thomwolf's avatar
thomwolf committed
270
            for b, example_index in enumerate(example_indices):
thomwolf's avatar
thomwolf committed
271
272
273
274
275
                feature = features[example_index.item()]
                unique_id = int(feature.unique_id)
                # feature = unique_id_to_feature[unique_id]
                output_json = collections.OrderedDict()
                output_json["linex_index"] = unique_id
thomwolf's avatar
thomwolf committed
276
                all_out_features = []
thomwolf's avatar
thomwolf committed
277
278
279
                for (i, token) in enumerate(feature.tokens):
                    all_layers = []
                    for (j, layer_index) in enumerate(layer_indexes):
thomwolf's avatar
thomwolf committed
280
281
                        layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy()
                        layer_output = layer_output[b]
thomwolf's avatar
thomwolf committed
282
283
284
                        layers = collections.OrderedDict()
                        layers["index"] = layer_index
                        layers["values"] = [
thomwolf's avatar
thomwolf committed
285
                            round(x.item(), 6) for x in layer_output[i]
thomwolf's avatar
thomwolf committed
286
287
                        ]
                        all_layers.append(layers)
thomwolf's avatar
thomwolf committed
288
289
290
291
292
                    out_features = collections.OrderedDict()
                    out_features["token"] = token
                    out_features["layers"] = all_layers
                    all_out_features.append(out_features)
                output_json["features"] = all_out_features
thomwolf's avatar
thomwolf committed
293
                writer.write(json.dumps(output_json) + "\n")
294
295
296


if __name__ == "__main__":
thomwolf's avatar
thomwolf committed
297
    main()