test_pipelines_audio_classification.py 4.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, PreTrainedTokenizer
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_datasets,
    require_tf,
    require_torch,
    slow,
)

from .test_pipelines_common import ANY, PipelineTestCaseMeta


@is_pipeline_test
@require_torch
class AudioClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING

    @require_datasets
    @slow
    def run_pipeline_test(self, model, tokenizer, feature_extractor):
        import datasets

        audio_classifier = AudioClassificationPipeline(model=model, feature_extractor=feature_extractor)

        # test with a raw waveform
        audio = np.zeros((34000,))
        output = audio_classifier(audio)
        # by default a model is initialized with num_labels=2
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )
        output = audio_classifier(audio, top_k=1)
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

        # test with a local file
        dataset = datasets.load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = dataset[0]["file"]
        output = audio_classifier(filename)
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

    @require_torch
    def test_small_model_pt(self):
        model = "anton-l/wav2vec2-random-tiny-classifier"
79
80

        # hack: dummy tokenizer is required to prevent pipeline from failing
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        tokenizer = PreTrainedTokenizer()
        audio_classifier = pipeline("audio-classification", model=model, tokenizer=tokenizer)

        audio = np.ones((8000,))
        output = audio_classifier(audio, top_k=4)
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {"score": 0.0843, "label": "on"},
                {"score": 0.0840, "label": "left"},
                {"score": 0.0837, "label": "off"},
                {"score": 0.0835, "label": "yes"},
            ],
        )

    @require_torch
    @require_datasets
    @slow
    def test_large_model_pt(self):
        import datasets

        model = "superb/wav2vec2-base-superb-ks"
103
104

        # hack: dummy tokenizer is required to prevent pipeline from failing
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        tokenizer = PreTrainedTokenizer()
        audio_classifier = pipeline("audio-classification", model=model, tokenizer=tokenizer)
        dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test")

        audio = np.array(dataset[3]["speech"], dtype=np.float32)
        output = audio_classifier(audio, top_k=4)
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {"score": 0.9809, "label": "go"},
                {"score": 0.0073, "label": "up"},
                {"score": 0.0064, "label": "_unknown_"},
                {"score": 0.0015, "label": "down"},
            ],
        )

    @require_tf
    @unittest.skip("Audio classification is not implemented for TF")
    def test_small_model_tf(self):
        pass