test_modeling_tf_marian.py 17.4 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
18
19
20
21
22
import tempfile
import unittest
import warnings

from transformers import AutoTokenizer, MarianConfig, MarianTokenizer, TranslationPipeline, is_tf_available
from transformers.file_utils import cached_property
23
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
24
25

from .test_configuration_common import ConfigTester
26
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
27
28
29
30
31


if is_tf_available():
    import tensorflow as tf

32
    from transformers import TFAutoModelForSeq2SeqLM, TFMarianModel, TFMarianMTModel
33
34


35
36
@require_tf
class TFMarianModelTester:
37
    config_cls = MarianConfig
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFMarianModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
112
        head_mask = inputs_dict["head_mask"]
113
114
115
        self.batch_size = 1

        # first forward pass
116
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        output, past_key_values = outputs.to_tuple()
        past_key_values = past_key_values[1]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_marian_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
149
150
    head_mask=None,
    decoder_head_mask=None,
151
    cross_attn_head_mask=None,
152
153
154
155
156
157
158
159
160
161
162
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
163
164
165
166
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
167
168
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
169
170
171
172
173
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
174
175
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
176
        "cross_attn_head_mask": cross_attn_head_mask,
177
    }
178
179
180


@require_tf
181
182
class TFMarianModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFMarianMTModel, TFMarianModel) if is_tf_available() else ()
183
184
185
    all_generative_model_classes = (TFMarianMTModel,) if is_tf_available() else ()
    is_encoder_decoder = True
    test_pruning = False
186
    test_onnx = False
187
188

    def setUp(self):
189
        self.model_tester = TFMarianModelTester(self)
190
191
192
193
194
        self.config_tester = ConfigTester(self, config_class=MarianConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

195
196
197
    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        model_class = self.all_generative_model_classes[0]
        input_ids = {
            "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
            "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
        }

        # Prepare our model
        model = model_class(config)
        model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
        # Let's load it from the disk to be sure we can use pre-trained weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            model = model_class.from_pretrained(tmpdirname)

        outputs_dict = model(input_ids)
        hidden_states = outputs_dict[0]

        # Add a dense layer on top to test integration with other keras modules
        outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

        # Compile extended model
        extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
        extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

230
231
232
233
234
235
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
236
237
238
239
240
241
242
243
244
245
246
247
248

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
249

Julien Plu's avatar
Julien Plu committed
250
    def test_saved_model_creation(self):
Julien Plu's avatar
Julien Plu committed
251
        # This test is too long (>30sec) and makes fail the CI
Julien Plu's avatar
Julien Plu committed
252
253
        pass

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    def test_resize_token_embeddings(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def _get_word_embedding_weight(model, embedding_layer):
            if hasattr(embedding_layer, "weight"):
                return embedding_layer.weight
            else:
                # Here we build the word embeddings weights if not exists.
                # And then we retry to get the attribute once built.
                model(model.dummy_inputs)
                if hasattr(embedding_layer, "weight"):
                    return embedding_layer.weight
                else:
                    return None

        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                old_final_logits_bias = model.get_bias()

                # reshape the embeddings
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                new_final_logits_bias = model.get_bias()

                # check that the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size

                self.assertEqual(new_input_embeddings.shape[0], assert_size)

                # check that weights remain the same after resizing
                models_equal = True
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

                if old_final_logits_bias is not None and new_final_logits_bias is not None:
                    old_final_logits_bias = old_final_logits_bias["final_logits_bias"]
                    new_final_logits_bias = new_final_logits_bias["final_logits_bias"]
                    self.assertEqual(new_final_logits_bias.shape[0], 1)
                    self.assertEqual(new_final_logits_bias.shape[1], assert_size)

                    models_equal = True
                    for old, new in zip(old_final_logits_bias.value(), new_final_logits_bias.value()):
                        for p1, p2 in zip(old, new):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                    self.assertTrue(models_equal)

317

318
319
320
321
322
323
324
325
326
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if tf.debugging.assert_near(a, b, atol=atol):
            return True
        raise
    except Exception:
327
328
329
        if len(prefix) > 0:
            prefix = f"{prefix}: "
        raise AssertionError(f"{prefix}{a} != {b}")
330
331
332
333
334
335


def _long_tensor(tok_lst):
    return tf.constant(tok_lst, dtype=tf.int32)


Lysandre Debut's avatar
Lysandre Debut committed
336
@require_tf
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
class AbstractMarianIntegrationTest(unittest.TestCase):
    maxDiff = 1000  # show more chars for failing integration tests

    @classmethod
    def setUpClass(cls) -> None:
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
        return cls

    @cached_property
    def tokenizer(self) -> MarianTokenizer:
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

    @cached_property
    def model(self):
        warnings.simplefilter("error")
356
        model: TFMarianMTModel = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
357
358
359
360
361
362
363
364
365
366
367
368
        assert isinstance(model, TFMarianMTModel)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
369
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf")
370
371
372
373
374
375
376
377
378
        generated_ids = self.model.generate(
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
        )
        generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)
        return generated_words


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
379
@require_tf
380
381
382
383
384
385
386
387
class TestMarian_MT_EN(AbstractMarianIntegrationTest):
    """Cover low resource/high perplexity setting. This breaks if pad_token_id logits not set to LARGE_NEGATIVE."""

    src = "mt"
    tgt = "en"
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]

388
    @unittest.skip("Skipping until #12647 is resolved.")
389
390
391
392
393
394
395
    @slow
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
396
@require_tf
397
398
399
400
401
402
class TestMarian_en_zh(AbstractMarianIntegrationTest):
    src = "en"
    tgt = "zh"
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

403
    @unittest.skip("Skipping until #12647 is resolved.")
404
405
406
407
408
409
410
    @slow
    def test_batch_generation_en_zh(self):
        self._assert_generated_batch_equal_expected()


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
411
@require_tf
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
class TestMarian_en_ROMANCE(AbstractMarianIntegrationTest):
    """Multilingual on target side."""

    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]

428
    @unittest.skip("Skipping until #12647 is resolved.")
429
430
431
432
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
        self._assert_generated_batch_equal_expected()

433
    @unittest.skip("Skipping until #12647 is resolved.")
434
435
436
437
438
    @slow
    def test_pipeline(self):
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="tf")
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])