test_modeling_auto.py 17.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import sys
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20
from collections import OrderedDict
21
from pathlib import Path
thomwolf's avatar
thomwolf committed
22

23
24
25
import pytest

from transformers import BertConfig, GPT2Model, is_torch_available
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
27
from transformers.testing_utils import (
28
    DUMMY_UNKNOWN_IDENTIFIER,
29
    SMALL_MODEL_IDENTIFIER,
30
    RequestCounter,
31
32
33
34
    require_scatter,
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
35

36
from ..bert.test_modeling_bert import BertModelTester
37

38

Yih-Dar's avatar
Yih-Dar committed
39
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
40
41
42
43

from test_module.custom_configuration import CustomConfig  # noqa E402


44
if is_torch_available():
45
46
    import torch

47
    from test_module.custom_modeling import CustomModel
48
49
50
    from transformers import (
        AutoConfig,
        AutoModel,
51
52
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
53
54
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
55
        AutoModelForSeq2SeqLM,
56
        AutoModelForSequenceClassification,
57
        AutoModelForTableQuestionAnswering,
58
        AutoModelForTokenClassification,
59
60
61
62
63
        AutoModelWithLMHead,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
64
        BertForTokenClassification,
65
        BertModel,
66
67
        FunnelBaseModel,
        FunnelModel,
68
69
70
71
72
        GPT2Config,
        GPT2LMHeadModel,
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
73
74
        TapasConfig,
        TapasForQuestionAnswering,
75
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
76
    from transformers.models.auto.modeling_auto import (
77
78
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
79
80
81
82
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
83
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
84
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
85
86
87
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
88
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
89
90


91
@require_torch
thomwolf's avatar
thomwolf committed
92
class AutoModelTest(unittest.TestCase):
93
    @slow
thomwolf's avatar
thomwolf committed
94
    def test_model_from_pretrained(self):
95
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
96
97
98
99
100
101
102
103
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
Lysandre Debut's avatar
Lysandre Debut committed
104
105
106
107
108

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
109

thomwolf's avatar
thomwolf committed
110
111
    @slow
    def test_model_for_pretraining_from_pretrained(self):
112
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
121
122
123
            # Only one value should not be initialized and in the missing keys.
            missing_keys = loading_info.pop("missing_keys")
            self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys)
124
            for key, value in loading_info.items():
125
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
126

127
    @slow
LysandreJik's avatar
LysandreJik committed
128
    def test_lmhead_model_from_pretrained(self):
129
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
130
131
132
133
134
135
136
137
138
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

175
    @slow
LysandreJik's avatar
LysandreJik committed
176
    def test_sequence_classification_model_from_pretrained(self):
177
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
178
179
180
181
182
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
183
184
185
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
186
187
188
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

189
    @slow
LysandreJik's avatar
LysandreJik committed
190
    def test_question_answering_model_from_pretrained(self):
191
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
192
193
194
195
196
197
198
199
200
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    @slow
    @require_scatter
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

216
217
    @slow
    def test_token_classification_model_from_pretrained(self):
218
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
219
220
221
222
223
224
225
226
227
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
228
229
230
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
231
232
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
233
234

    def test_from_identifier_from_model_type(self):
235
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
236
        self.assertIsInstance(model, RobertaForMaskedLM)
237
238
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

255
    def test_from_pretrained_dynamic_model_local(self):
256
257
258
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoModel.register(CustomConfig, CustomModel)
259

260
261
            config = CustomConfig(hidden_size=32)
            model = CustomModel(config)
262

263
264
265
266
267
268
269
270
271
272
273
274
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)

                new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.equal(p1, p2))

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[CustomConfig]
275

276
277
278
279
280
281
282
283
    def test_from_pretrained_dynamic_model_distant(self):
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

284
    def test_new_model_registration(self):
285
        AutoConfig.register("custom", CustomConfig)
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

        auto_classes = [
            AutoModel,
            AutoModelForCausalLM,
            AutoModelForMaskedLM,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSequenceClassification,
            AutoModelForTokenClassification,
        ]

        try:
            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
302
303
                        auto_class.register(BertConfig, CustomModel)
                    auto_class.register(CustomConfig, CustomModel)
304
305
306
307
308
309
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, BertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
310
                    config = CustomConfig(**tiny_config.to_dict())
311
                    model = auto_class.from_config(config)
312
                    self.assertIsInstance(model, CustomModel)
313
314
315
316

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
317
318
                        # The model is a CustomModel but from the new dynamically imported class.
                        self.assertIsInstance(new_model, CustomModel)
319
320

        finally:
321
322
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
323
324
325
326
327
328
329
330
331
            for mapping in (
                MODEL_MAPPING,
                MODEL_FOR_PRETRAINING_MAPPING,
                MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_MASKED_LM_MAPPING,
            ):
332
333
                if CustomConfig in mapping._extra_content:
                    del mapping._extra_content[CustomConfig]
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
        ):
            _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_tf_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only")

    def test_model_from_flax_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

    def test_cached_model_has_minimum_calls_to_head(self):
        # Make sure we have cached the model.
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
            self.assertEqual(counter.head_request_count, 1)
            self.assertEqual(counter.other_request_count, 0)

        # With a sharded checkpoint
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
            self.assertEqual(counter.get_request_count, 0)
376
            self.assertEqual(counter.head_request_count, 1)
377
            self.assertEqual(counter.other_request_count, 0)
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

    def test_attr_not_existing(self):

        from transformers.models.auto.auto_factory import _LazyAutoMapping

        _CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")])
        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)

        with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"):
            _MODEL_MAPPING[BertConfig]

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel)

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model)