test_modeling_vit.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViT model. """


import inspect
import unittest

21
from transformers import ViTConfig
22
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
23
from transformers.utils import cached_property, is_torch_available, is_vision_available
24

Yih-Dar's avatar
Yih-Dar committed
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
27
28
29
30


if is_torch_available():
    import torch
31
    from torch import nn
32

NielsRogge's avatar
NielsRogge committed
33
    from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
34
    from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


class ViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        scope=None,
NielsRogge's avatar
NielsRogge committed
63
        encoder_stride=2,
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
NielsRogge's avatar
NielsRogge committed
82
        self.encoder_stride = encoder_stride
83

NielsRogge's avatar
NielsRogge committed
84
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
85
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
86
        self.seq_length = num_patches + 1
87

88
89
90
91
92
93
94
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

95
96
97
98
99
100
        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTConfig(
101
102
103
104
105
106
107
108
109
110
111
112
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
113
            encoder_stride=self.encoder_stride,
114
115
116
117
118
119
120
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = ViTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
121
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
122

NielsRogge's avatar
NielsRogge committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = ViTForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
        )

        # test greyscale images
        config.num_channels = 1
        model = ViTForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size))

142
143
144
145
146
147
148
149
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
150
151
152
153
154
155
156
157
158
159
        # test greyscale images
        config.num_channels = 1
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class ViTModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            ViTModel,
            ViTForImageClassification,
NielsRogge's avatar
NielsRogge committed
182
            ViTForMaskedImageModeling,
183
184
185
186
        )
        if is_torch_available()
        else ()
    )
187
    fx_compatible = True
188
189
190
191
192
193
194

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ViTModelTester(self)
NielsRogge's avatar
NielsRogge committed
195
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)
196
197

    def test_config(self):
NielsRogge's avatar
NielsRogge committed
198
        self.config_tester.run_common_tests()
199

NielsRogge's avatar
NielsRogge committed
200
    @unittest.skip(reason="ViT does not use inputs_embeds")
201
202
203
204
205
206
207
208
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
209
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
210
            x = model.get_output_embeddings()
211
            self.assertTrue(x is None or isinstance(x, nn.Linear))
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
229
230
231
232
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

233
234
235
236
237
238
239
240
241
242
243
244
245
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
NielsRogge's avatar
NielsRogge committed
246
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
247
248
249
    return image


250
@require_torch
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
@require_vision
class ViTModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None

    @slow
    def test_inference_image_classification_head(self):
        model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
266
267
        with torch.no_grad():
            outputs = model(**inputs)
268
269
270
271
272
273
274
275

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-0.2744, 0.8215, -0.0836]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    @slow
    def test_inference_interpolate_pos_encoding(self):
        # ViT models have an `interpolate_pos_encoding` argument in their forward method,
        # allowing to interpolate the pre-trained position embeddings in order to use
        # the model on higher resolutions. The DINO model by Facebook AI leverages this
        # to visualize self-attention on higher resolution images.
        model = ViTModel.from_pretrained("facebook/dino-vits8").to(torch_device)

        feature_extractor = ViTFeatureExtractor.from_pretrained("facebook/dino-vits8", size=480)
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(pixel_values, interpolate_pos_encoding=True)

        # verify the logits
        expected_shape = torch.Size((1, 3601, 384))
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)

        expected_slice = torch.tensor(
            [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))