test_modeling_flax_vit.py 7.45 KB
Newer Older
Jayendra's avatar
Jayendra committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import unittest

import numpy as np

from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
Jayendra's avatar
Jayendra committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


if is_flax_available():

    import jax
    from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel


class FlaxViTModelTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range

NielsRogge's avatar
NielsRogge committed
70
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
71
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
72
        self.seq_length = num_patches + 1
73

Jayendra's avatar
Jayendra committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        config = ViTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

        return config, pixel_values

NielsRogge's avatar
NielsRogge committed
94
    def create_and_check_model(self, config, pixel_values):
Jayendra's avatar
Jayendra committed
95
96
97
98
99
100
101
102
        model = FlaxViTModel(config=config)
        result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))

NielsRogge's avatar
NielsRogge committed
103
104
105
106
107
108
109
110
111
112
113
114
115
    def create_and_check_for_image_classification(self, config, pixel_values):
        config.num_labels = self.type_sequence_label_size
        model = FlaxViTForImageClassification(config=config)
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

        # test greyscale images
        config.num_channels = 1
        model = FlaxViTForImageClassification(config)

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)

Jayendra's avatar
Jayendra committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_flax
class FlaxViTModelTest(FlaxModelTesterMixin, unittest.TestCase):

    all_model_classes = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()

    def setUp(self) -> None:
        self.model_tester = FlaxViTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
138
139
140
141
142
143
144
145
146
    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    # We need to override this test because ViT's forward signature is different than text models.
Jayendra's avatar
Jayendra committed
147
148
149
150
151
152
153
154
155
156
157
158
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

NielsRogge's avatar
NielsRogge committed
159
    # We need to override this test because ViT expects pixel_values instead of input_ids
Jayendra's avatar
Jayendra committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                model = model_class(config)

                @jax.jit
                def model_jitted(pixel_values, **kwargs):
                    return model(pixel_values=pixel_values, **kwargs)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("google/vit-base-patch16-224")
            outputs = model(np.ones((1, 3, 224, 224)))
            self.assertIsNotNone(outputs)