test_pipelines_text_classification.py 8.29 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
from transformers import (
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    TextClassificationPipeline,
    pipeline,
)
23
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
24

25
from .test_pipelines_common import ANY
26

27

28
29
30
31
# These 2 model types require different inputs than those of the usual text models.
_TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"}


32
@is_pipeline_test
33
class TextClassificationPipelineTests(unittest.TestCase):
34
35
36
    model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING

37
    if model_mapping is not None:
38
        model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
39
    if tf_model_mapping is not None:
40
41
42
        tf_model_mapping = {
            config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
        }
43

44
    @require_torch
45
    def test_small_model_pt(self):
46
        text_classifier = pipeline(
47
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
48
49
50
        )

        outputs = text_classifier("This is great !")
51
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        outputs = text_classifier("This is great !", top_k=2)
        self.assertEqual(
            nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]
        )

        outputs = text_classifier(["This is great !", "This is bad"], top_k=2)
        self.assertEqual(
            nested_simplify(outputs),
            [
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
            ],
        )

        outputs = text_classifier("This is great !", top_k=1)
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

        # Legacy behavior
        outputs = text_classifier("This is great !", return_all_scores=False)
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        outputs = text_classifier("This is great !", return_all_scores=True)
        self.assertEqual(
            nested_simplify(outputs), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]]
        )

        outputs = text_classifier(["This is great !", "Something else"], return_all_scores=True)
        self.assertEqual(
            nested_simplify(outputs),
            [
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
            ],
        )

        outputs = text_classifier(["This is great !", "Something else"], return_all_scores=False)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"label": "LABEL_0", "score": 0.504},
                {"label": "LABEL_0", "score": 0.504},
            ],
        )

97
98
99
100
101
102
103
104
105
106
107
108
109
110
    @require_torch
    def test_accepts_torch_device(self):
        import torch

        text_classifier = pipeline(
            task="text-classification",
            model="hf-internal-testing/tiny-random-distilbert",
            framework="pt",
            device=torch.device("cpu"),
        )

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

111
    @require_tf
112
    def test_small_model_tf(self):
113
        text_classifier = pipeline(
114
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
115
116
117
        )

        outputs = text_classifier("This is great !")
118
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    @slow
    @require_torch
    def test_pt_bert(self):
        text_classifier = pipeline("text-classification")

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
        outputs = text_classifier("This is bad !")
        self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
        outputs = text_classifier("Birds are a type of animal")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])

    @slow
    @require_tf
    def test_tf_bert(self):
        text_classifier = pipeline("text-classification", framework="tf")

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
        outputs = text_classifier("This is bad !")
        self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
        outputs = text_classifier("Birds are a type of animal")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])

144
    def get_test_pipeline(self, model, tokenizer, processor):
145
        text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
146
        return text_classifier, ["HuggingFace is in", "This is another test"]
147

148
149
    def run_pipeline_test(self, text_classifier, _):
        model = text_classifier.model
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        # Small inputs because BartTokenizer tiny has maximum position embeddings = 22
        valid_inputs = "HuggingFace is in"
        outputs = text_classifier(valid_inputs)

        self.assertEqual(nested_simplify(outputs), [{"label": ANY(str), "score": ANY(float)}])
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())

        valid_inputs = ["HuggingFace is in ", "Paris is in France"]
        outputs = text_classifier(valid_inputs)
        self.assertEqual(
            nested_simplify(outputs),
            [{"label": ANY(str), "score": ANY(float)}, {"label": ANY(str), "score": ANY(float)}],
        )
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
        self.assertTrue(outputs[1]["label"] in model.config.id2label.values())
165

166
167
168
169
170
171
172
173
174
        # Forcing to get all results with `top_k=None`
        # This is NOT the legacy format
        outputs = text_classifier(valid_inputs, top_k=None)
        N = len(model.config.id2label.values())
        self.assertEqual(
            nested_simplify(outputs),
            [[{"label": ANY(str), "score": ANY(float)}] * N, [{"label": ANY(str), "score": ANY(float)}] * N],
        )

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        valid_inputs = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"}
        outputs = text_classifier(valid_inputs)
        self.assertEqual(
            nested_simplify(outputs),
            {"label": ANY(str), "score": ANY(float)},
        )
        self.assertTrue(outputs["label"] in model.config.id2label.values())

        # This might be used a text pair, but tokenizer + pipe interaction
        # makes it hard to understand that it's not using the pair properly
        # https://github.com/huggingface/transformers/issues/17305
        # We disabled this usage instead as it was outputting wrong outputs.
        invalid_input = [["HuggingFace is in ", "Paris is in France"]]
        with self.assertRaises(ValueError):
            text_classifier(invalid_input)

        # This used to be valid for doing text pairs
        # We're keeping it working because of backward compatibility
        outputs = text_classifier([[["HuggingFace is in ", "Paris is in France"]]])
        self.assertEqual(
            nested_simplify(outputs),
            [{"label": ANY(str), "score": ANY(float)}],
        )
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())