test_modeling_tf_blenderbot.py 8.96 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15

16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
import unittest

21
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
Matt's avatar
Matt committed
22
from transformers.testing_utils import require_tf, require_tokenizers, slow
23
from transformers.utils import cached_property
24

Yih-Dar's avatar
Yih-Dar committed
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
28
29


30
31
32
if is_tf_available():
    import tensorflow as tf

33
    from transformers import TFAutoModelForSeq2SeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
34
35


36
37
@require_tf
class TFBlenderbotModelTester:
38
    config_cls = BlenderbotConfig
39
40
41
42
43
44
45
46
47
48
49
50
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
51
        num_hidden_layers=2,
52
53
54
55
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
56
        max_position_embeddings=50,
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFBlenderbotModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
113
        head_mask = inputs_dict["head_mask"]
114
115
116
        self.batch_size = 1

        # first forward pass
117
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_blenderbot_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
149
150
    head_mask=None,
    decoder_head_mask=None,
151
    cross_attn_head_mask=None,
152
153
154
155
156
157
158
159
160
161
162
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
163
164
165
166
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
167
168
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
169
170
171
172
173
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
174
175
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
176
        "cross_attn_head_mask": cross_attn_head_mask,
177
    }
178
179
180


@require_tf
181
class TFBlenderbotModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
182
    all_model_classes = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
183
    all_generative_model_classes = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
184
185
186
187
188
189
    pipeline_model_mapping = (
        {
            "conversational": TFBlenderbotForConditionalGeneration,
            "feature-extraction": TFBlenderbotModel,
            "summarization": TFBlenderbotForConditionalGeneration,
            "text2text-generation": TFBlenderbotForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
190
            "translation": TFBlenderbotForConditionalGeneration,
191
192
193
194
        }
        if is_tf_available()
        else {}
    )
195
196
    is_encoder_decoder = True
    test_pruning = False
197
    test_onnx = False
198
199

    def setUp(self):
Julien Plu's avatar
Julien Plu committed
200
        self.model_tester = TFBlenderbotModelTester(self)
201
202
203
204
205
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

206
207
208
    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
209

210

211
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
212
@require_tf
213
214
215
class TFBlenderbot400MIntegrationTests(unittest.TestCase):
    src_text = ["My friends are cool but they eat too many carbs."]
    model_name = "facebook/blenderbot-400M-distill"
216
217
218

    @cached_property
    def tokenizer(self):
219
        return BlenderbotTokenizer.from_pretrained(self.model_name)
220
221
222

    @cached_property
    def model(self):
223
        model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
224
225
226
        return model

    @slow
227
    def test_generation_from_long_input(self):
228
229
230
231
232
        model_inputs = self.tokenizer(self.src_text, return_tensors="tf")
        generated_ids = self.model.generate(
            model_inputs.input_ids,
        )
        generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)[0]
233
234
235
        assert (
            generated_words
            == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
236
        )