"init_dummy_model_dac.py" did not exist on "d0140745a5d099609d2497a9e869649bef1d10d3"
test_modeling_llama.py 38.6 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch LLaMA model. """

17
import tempfile
Jason Phang's avatar
Jason Phang committed
18
19
import unittest

Yih-Dar's avatar
Yih-Dar committed
20
import pytest
21
22
from parameterized import parameterized

23
from transformers import LlamaConfig, StaticCache, is_torch_available, logging, set_seed
24
from transformers.testing_utils import (
25
    CaptureLogger,
26
    require_bitsandbytes,
27
    require_flash_attn,
28
    require_read_token,
29
30
31
    require_torch,
    require_torch_accelerator,
    require_torch_gpu,
32
    require_torch_sdpa,
33
34
35
    slow,
    torch_device,
)
Jason Phang's avatar
Jason Phang committed
36

Joao Gante's avatar
Joao Gante committed
37
from ...generation.test_utils import GenerationTesterMixin
Jason Phang's avatar
Jason Phang committed
38
from ...test_configuration_common import ConfigTester
39
from ...test_modeling_common import ModelTesterMixin, ids_tensor
Joao Gante's avatar
Joao Gante committed
40
from ...test_pipeline_mixin import PipelineTesterMixin
Jason Phang's avatar
Jason Phang committed
41
42
43
44
45


if is_torch_available():
    import torch

46
47
48
    from transformers import (
        CodeLlamaTokenizer,
        LlamaForCausalLM,
49
        LlamaForQuestionAnswering,
50
51
52
53
        LlamaForSequenceClassification,
        LlamaModel,
        LlamaTokenizer,
    )
54
55
56
57
58
    from transformers.models.llama.modeling_llama import (
        LlamaDynamicNTKScalingRotaryEmbedding,
        LlamaLinearScalingRotaryEmbedding,
        LlamaRotaryEmbedding,
    )
Jason Phang's avatar
Jason Phang committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72


class LlamaModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
73
        num_hidden_layers=2,
Jason Phang's avatar
Jason Phang committed
74
75
76
77
78
79
80
81
82
83
84
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
85
        pad_token_id=0,
Jason Phang's avatar
Jason Phang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
109
        self.pad_token_id = pad_token_id
Jason Phang's avatar
Jason Phang committed
110
111
112
113
114
115
116
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
117
            input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
Jason Phang's avatar
Jason Phang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return LlamaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
149
            pad_token_id=self.pad_token_id,
Jason Phang's avatar
Jason Phang committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        )

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LlamaModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = LlamaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = LlamaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = LlamaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
Joao Gante's avatar
Joao Gante committed
288
class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
289
290
291
292
293
    all_model_classes = (
        (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification, LlamaForQuestionAnswering)
        if is_torch_available()
        else ()
    )
Jason Phang's avatar
Jason Phang committed
294
    all_generative_model_classes = (LlamaForCausalLM,) if is_torch_available() else ()
Joao Gante's avatar
Joao Gante committed
295
296
297
298
299
300
    pipeline_model_mapping = (
        {
            "feature-extraction": LlamaModel,
            "text-classification": LlamaForSequenceClassification,
            "text-generation": LlamaForCausalLM,
            "zero-shot": LlamaForSequenceClassification,
301
            "question-answering": LlamaForQuestionAnswering,
Joao Gante's avatar
Joao Gante committed
302
303
304
305
        }
        if is_torch_available()
        else {}
    )
Jason Phang's avatar
Jason Phang committed
306
    test_headmasking = False
Joao Gante's avatar
Joao Gante committed
307
    test_pruning = False
308
    fx_compatible = True
Jason Phang's avatar
Jason Phang committed
309

310
311
312
313
    # Need to use `0.8` instead of `0.9` for `test_cpu_offload`
    # This is because we are hitting edge cases with the causal_mask buffer
    model_split_percents = [0.5, 0.7, 0.8]

Jason Phang's avatar
Jason Phang committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    def setUp(self):
        self.model_tester = LlamaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LlamaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def test_llama_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_llama_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_llama_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

371
    @unittest.skip("Llama buffers include complex numbers, which breaks this test")
Jason Phang's avatar
Jason Phang committed
372
373
    def test_save_load_fast_init_from_base(self):
        pass
374
375

    @parameterized.expand([("linear",), ("dynamic",)])
376
    def test_model_rope_scaling_from_config(self, scaling_type):
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        short_input = ids_tensor([1, 10], config.vocab_size)
        long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        original_model = LlamaModel(config)
        original_model.to(torch_device)
        original_model.eval()
        original_short_output = original_model(short_input).last_hidden_state
        original_long_output = original_model(long_input).last_hidden_state

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        config.rope_scaling = {"type": scaling_type, "factor": 10.0}
        scaled_model = LlamaModel(config)
        scaled_model.to(torch_device)
        scaled_model.eval()
        scaled_short_output = scaled_model(short_input).last_hidden_state
        scaled_long_output = scaled_model(long_input).last_hidden_state

        # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
        # maximum sequence length, so the outputs for the short input should match.
        if scaling_type == "dynamic":
            self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
        else:
            self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))

        # The output should be different for long inputs
        self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    def test_model_rope_scaling(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        hidden_size = config.hidden_size
        num_heads = config.num_attention_heads
        head_dim = hidden_size // num_heads
        scaling_factor = 10
        short_input_length = 10
        long_input_length = int(config.max_position_embeddings * 1.5)

        # Inputs
        x = torch.randn(1, dtype=torch.float32, device=torch_device)  # used exlusively to get the dtype and the device
        position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
        position_ids_short = position_ids_short.unsqueeze(0)
        position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
        position_ids_long = position_ids_long.unsqueeze(0)

        # Sanity check original RoPE
        original_rope = LlamaRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
        ).to(torch_device)
        original_cos_short, original_sin_short = original_rope(x, position_ids_short)
        original_cos_long, original_sin_long = original_rope(x, position_ids_long)
        torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
        torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])

        # Sanity check linear RoPE scaling
        # New position "x" should match original position with index "x/scaling_factor"
        linear_scaling_rope = LlamaLinearScalingRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
            scaling_factor=scaling_factor,
        ).to(torch_device)
        linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
        linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
        torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
        torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
        for new_position in range(0, long_input_length, scaling_factor):
            original_position = int(new_position // scaling_factor)
            torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
            torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])

        # Sanity check Dynamic NTK RoPE scaling
        # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
        # with scaling_factor (or that `inv_freq` decreases)
        ntk_scaling_rope = LlamaDynamicNTKScalingRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
            scaling_factor=scaling_factor,
        ).to(torch_device)
        ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
        ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
        torch.testing.assert_close(ntk_cos_short, original_cos_short)
        torch.testing.assert_close(ntk_sin_short, original_sin_short)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_cos_long, original_cos_long)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_sin_long, original_sin_long)
        self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())

469
470
    @require_flash_attn
    @require_torch_gpu
471
    @require_bitsandbytes
Yih-Dar's avatar
Yih-Dar committed
472
    @pytest.mark.flash_attn_test
473
    @require_read_token
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-hf",
            load_in_4bit=True,
            device_map={"": 0},
        )

        tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

        texts = ["hi", "Hello this is a very long sentence"]

        tokenizer.padding_side = "right"
        tokenizer.pad_token = tokenizer.eos_token

        inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)

        output_native = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_native = tokenizer.batch_decode(output_native)

        model = LlamaForCausalLM.from_pretrained(
498
            "meta-llama/Llama-2-7b-hf", load_in_4bit=True, device_map={"": 0}, attn_implementation="flash_attention_2"
499
500
501
502
503
504
505
        )

        output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_fa_2 = tokenizer.batch_decode(output_fa_2)

        self.assertListEqual(output_native, output_fa_2)

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    @require_flash_attn
    @require_torch_gpu
    @slow
    def test_use_flash_attention_2_true(self):
        """
        NOTE: this is the only test testing that the legacy `use_flash_attention=2` argument still works as intended.
        """
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            with tempfile.TemporaryDirectory() as tmp_dir:
                model = model_class(config)
                model.save_pretrained(tmp_dir)

                new_model = LlamaForCausalLM.from_pretrained(
                    tmp_dir, use_flash_attention_2=True, torch_dtype=torch.float16
                ).to("cuda")

                self.assertTrue(new_model.config._attn_implementation == "flash_attention_2")

                has_flash = False
                for name, submodule in new_model.named_modules():
                    if "FlashAttention" in submodule.__class__.__name__:
                        has_flash = True
                        break
                if not has_flash:
                    raise ValueError("The flash model should have flash attention layers")

    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        max_new_tokens = 30

fxmarty's avatar
fxmarty committed
541
        tokenizer = LlamaTokenizer.from_pretrained("saibo/llama-1B")
542
543

        model_sdpa = LlamaForCausalLM.from_pretrained(
fxmarty's avatar
fxmarty committed
544
            "saibo/llama-1B",
545
546
547
548
549
550
551
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
        ).to(torch_device)

        self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

        model_eager = LlamaForCausalLM.from_pretrained(
fxmarty's avatar
fxmarty committed
552
            "saibo/llama-1B",
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            attn_implementation="eager",
        ).to(torch_device)

        self.assertTrue(model_eager.config._attn_implementation == "eager")

        for name, submodule in model_eager.named_modules():
            if "SdpaAttention" in submodule.__class__.__name__:
                raise ValueError("The eager model should not have SDPA attention layers")

        has_sdpa = False
        for name, submodule in model_sdpa.named_modules():
            if "SdpaAttention" in submodule.__class__.__name__:
                has_sdpa = True
                break
        if not has_sdpa:
            raise ValueError("The SDPA model should have SDPA attention layers")

fxmarty's avatar
fxmarty committed
572
573
574
575
576
        texts = [
            "hi here's a longer context, getting longer and",
            "Hello this is a very long sentence my friend, very long for real",
            "Today I am in Paris and",
        ]
577
578
579
580
581
582
583
584
585

        for padding_side in ["left", "right"]:
            tokenizer.padding_side = padding_side
            tokenizer.pad_token = tokenizer.eos_token

            inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device)

            res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
            res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
586
587
588
589
590
591
592
593
594
595
596
597

            with self.subTest(f"{padding_side}"):
                torch.testing.assert_close(
                    res_eager,
                    res_sdpa,
                    msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}",
                )

    @unittest.skip("TODO @gante fix this for Llama")
    @parameterized.expand([(1, False), (1, True), (4, False)])
    def test_new_cache_format(self, num_beams, do_sample):
        pass
598

599

600
@require_torch_gpu
601
class LlamaIntegrationTest(unittest.TestCase):
602
603
604
605
606
607
608
609
610
611
    # This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
    # Depending on the hardware we get different logits / generations
    cuda_compute_capability_major_version = None

    @classmethod
    def setUpClass(cls):
        if is_torch_available() and torch.cuda.is_available():
            # 8 is for A100 / A10 and 7 for T4
            cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]

612
613
614
615
616
617
618
619
620
621
    @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!")
    @slow
    def test_model_7b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map="auto")
        out = model(torch.tensor([input_ids]))
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # slicing logits[0, 0, 0:30]
622
        EXPECTED_SLICE = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,])  # fmt: skip
623
624
625
626
627
628
629
630
631
632
633
634
        torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5)

    @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!")
    @slow
    def test_model_13b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf", device_map="auto")
        out = model(torch.tensor(input_ids))
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # slicing logits[0, 0, 0:30]
635
        EXPECTED_SLICE = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273])  # fmt: skip
636
637
638
639
640
641
642
643
644
645
646
647
        torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5)

    @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!")
    @slow
    def test_model_13bf_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf", device_map="auto")
        out = model(torch.tensor(input_ids))
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # slicing logits[0, 0, 0:30]
648
        EXPECTED_SLICE = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513])  # fmt: skip
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        torch.testing.assert_close(out.mean(-1), EXPECTED_SLICE, atol=1e-2, rtol=1e-2)

    @unittest.skip(
        "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test"
    )
    @slow
    def test_model_70b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf", device_map="auto")
        out = model(torch.tensor(input_ids))

        EXPECTED_MEAN = torch.tensor(
            [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]], dtype=torch.float32
        )
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
664
        EXPECTED_SLICE = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312])  # fmt: skip
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5)

    @unittest.skip("Model is curently gated")
    @slow
    def test_model_13b_greedy_generation(self):
        EXPECTED_TEXT_COMPLETION = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi"""
        prompt = "Simply put, the theory of relativity states that "
        tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf")
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-13b-chat-hf", device_map="sequential", use_safetensors=False
        )

        # greedy generation outputs
        generated_ids = model.generate(input_ids, max_new_tokens=64, top_p=None, temperature=1, do_sample=False)
        text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
682

683
684
685
686
687
    @slow
    @require_torch_gpu
    @require_read_token
    def test_compile_static_cache(self):
        NUM_TOKENS_TO_GENERATE = 40
688
689
690
691
692
693
694
695
696
697
698
        EXPECTED_TEXT_COMPLETION = {
            7: [
                "Simply put, the theory of relativity states that 1) the speed of light is constant, 2) the speed of light is the same for all observers, and 3) the laws of physics are the same for all observers.",
                "My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
            ],
            8: [
                "Simply put, the theory of relativity states that 1) the speed of light is the same for all observers, and 2) the laws of physics are the same for all observers.\nThe first part of the theory of relativity",
                "My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
            ],
        }

699
700
701
702
703
        prompts = [
            "Simply put, the theory of relativity states that ",
            "My favorite all time favorite condiment is ketchup.",
        ]
        tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token="</s>", padding_side="right")
704
705
706
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-hf", device_map="sequential", torch_dtype=torch.float16
        )
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
        inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)

        def decode_one_tokens(model, cur_token, input_pos, cache_position):
            logits = model(
                cur_token, position_ids=input_pos, cache_position=cache_position, return_dict=False, use_cache=True
            )[0]
            new_token = torch.argmax(logits[:, -1], dim=-1)[:, None]
            return new_token

        batch_size, seq_length = inputs["input_ids"].shape
        with torch.no_grad():
            model._setup_cache(StaticCache, 2, max_cache_len=4096)
            cache_position = torch.arange(seq_length, device=torch_device)
            generated_ids = torch.zeros(
                batch_size, seq_length + NUM_TOKENS_TO_GENERATE + 1, dtype=torch.int, device=torch_device
            )
            generated_ids[:, cache_position] = inputs["input_ids"].to(torch_device).to(torch.int)

            logits = model(**inputs, cache_position=cache_position, return_dict=False, use_cache=True)[0]
            next_token = torch.argmax(logits[:, -1], dim=-1)[:, None]
            generated_ids[:, seq_length] = next_token[:, 0]

            decode_one_tokens = torch.compile(decode_one_tokens, mode="reduce-overhead", fullgraph=True)
            cache_position = torch.tensor([seq_length + 1], device=torch_device)
            for _ in range(1, NUM_TOKENS_TO_GENERATE):
                with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
                    with CaptureLogger(logging.get_logger(__name__)) as cl:
                        next_token = decode_one_tokens(model, next_token.clone(), None, cache_position)
                        self.assertNotIn("skipping cudagraphs due to", cl.out)
                    generated_ids[:, cache_position] = next_token.int()
                cache_position += 1

        text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
740
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], text)
741

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

@require_torch
class CodeLlamaIntegrationTest(unittest.TestCase):
    PROMPTS = [
        '''def remove_non_ascii(s: str) -> str:
    """ <FILL_ME>
    return result
''',
        """# Installation instructions:
    ```bash
<FILL_ME>
    ```
This downloads the LLaMA inference code and installs the repository as a local pip package.
""",
        """class InterfaceManagerFactory(AbstractManagerFactory):
    def __init__(<FILL_ME>
def main():
    factory = InterfaceManagerFactory(start=datetime.now())
    managers = []
    for i in range(10):
        managers.append(factory.build(id=i))
""",
        """/-- A quasi-prefunctoid is 1-connected iff all its etalisations are 1-connected. -/
theorem connected_iff_etalisation [C D : precategoroid] (P : quasi_prefunctoid C D) :
π₁ P = 0 ↔ <FILL_ME> = 0 :=
begin
split,
{ intros h f,
    rw pi_1_etalisation at h,
    simp [h],
    refl
},
{ intro h,
    have := @quasi_adjoint C D P,
    simp [←pi_1_etalisation, this, h],
    refl
}
end
""",
    ]

783
    @require_torch_accelerator
784
    @slow
785
    @unittest.skip("Model is too large")
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
    def test_model_7b_logits(self):
        model = LlamaForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf").to(torch_device)
        tokenizer = CodeLlamaTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
        # Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.
        # meaning by default this supports passing splitted list of inputs
        processed_text = tokenizer.batch_decode(tokenizer(self.PROMPTS)["input_ids"], add_special_tokens=False)
        # fmt: off
        EXPECTED_TEXT = [
            '<s> <PRE> def remove_non_ascii(s: str) -> str:\n    """  <SUF>\n    return result\n <MID>',
            '<s> <PRE> # Installation instructions:\n    ```bash\n <SUF>\n    ```\nThis downloads the LLaMA inference code and installs the repository as a local pip package.\n <MID>',
            '<s> <PRE> class InterfaceManagerFactory(AbstractManagerFactory):\n    def __init__( <SUF>\ndef main():\n    factory = InterfaceManagerFactory(start=datetime.now())\n    managers = []\n    for i in range(10):\n        managers.append(factory.build(id=i))\n <MID>',
            '<s> <PRE> /-- A quasi-prefunctoid is 1-connected iff all its etalisations are 1-connected. -/\ntheorem connected_iff_etalisation [C D : precategoroid] (P : quasi_prefunctoid C D) :\nπ₁ P = 0 ↔  <SUF> = 0 :=\nbegin\nsplit,\n{ intros h f,\n    rw pi_1_etalisation at h,\n    simp [h],\n    refl\n},\n{ intro h,\n    have := @quasi_adjoint C D P,\n    simp [←pi_1_etalisation, this, h],\n    refl\n}\nend\n <MID>'
        ]
        # fmt: on
        self.assertEqual(processed_text, EXPECTED_TEXT)
        processed_text_suffix_first = tokenizer.batch_decode(
            tokenizer(self.PROMPTS, suffix_first=True, add_special_tokens=False)["input_ids"]
        )

        # fmt: off
        EXPECTED_TEXT = [
            '<PRE> <SUF>\n    return result\n <MID> def remove_non_ascii(s: str) -> str:\n    """ ',
            '<PRE> <SUF>\n    ```\nThis downloads the LLaMA inference code and installs the repository as a local pip package.\n <MID> # Installation instructions:\n    ```bash\n',
            '<PRE> <SUF>\ndef main():\n    factory = InterfaceManagerFactory(start=datetime.now())\n    managers = []\n    for i in range(10):\n        managers.append(factory.build(id=i))\n <MID> class InterfaceManagerFactory(AbstractManagerFactory):\n    def __init__(',
            '<PRE> <SUF> = 0 :=\nbegin\nsplit,\n{ intros h f,\n    rw pi_1_etalisation at h,\n    simp [h],\n    refl\n},\n{ intro h,\n    have := @quasi_adjoint C D P,\n    simp [←pi_1_etalisation, this, h],\n    refl\n}\nend\n <MID> /-- A quasi-prefunctoid is 1-connected iff all its etalisations are 1-connected. -/\ntheorem connected_iff_etalisation [C D : precategoroid] (P : quasi_prefunctoid C D) :\nπ₁ P = 0 ↔ '
        ]
        EXPECTED_IDS = torch.tensor([[    1, 32007, 822, 3349, 29918, 5464, 29918, 294, 18869, 29898,29879, 29901, 851, 29897, 1599, 851, 29901, 13, 1678, 9995, 29871, 32008, 13, 1678, 736, 1121, 13, 32009, 15941, 1661, 29899, 28599, 2687, 4890, 515, 263, 1347, 29889, 13, 13, 1678, 826, 3174, 29901, 13, 4706, 269, 29901, 450, 1347, 304, 3349, 1661, 29899, 28599, 2687, 4890, 515, 29889, 13, 13, 1678, 16969, 29901, 13, 4706, 450, 1347, 411, 1661, 29899, 28599, 2687, 4890, 6206, 29889, 13, 1678, 9995, 13, 1678, 1121, 353, 5124, 13, 1678, 363, 274, 297, 269, 29901, 13, 4706, 565, 4356, 29898, 29883, 29897, 529, 29871, 29896, 29906, 29947, 29901, 13, 9651, 1121, 4619, 274, 32010, 2]])
        # fmt: on
        self.assertEqual(processed_text_suffix_first, EXPECTED_TEXT)
        input_ids = tokenizer(self.PROMPTS[0], return_tensors="pt")["input_ids"]
        generated_ids = model.generate(input_ids.to(torch_device), max_new_tokens=128)
        torch.testing.assert_close(generated_ids, EXPECTED_IDS)

        EXPECTED_INFILLING = [
            '<s> <PRE> def remove_non_ascii(s: str) -> str:\n    """  <SUF>\n    return result\n <MID>Remove non-ASCII characters from a string.\n\n    Args:\n        s: The string to remove non-ASCII characters from.\n\n    Returns:\n        The string with non-ASCII characters removed.\n    """\n    result = ""\n    for c in s:\n        if ord(c) < 128:\n            result += c <EOT></s>'
        ]
        infilling = tokenizer.batch_decode(generated_ids)
        self.assertEqual(infilling, EXPECTED_INFILLING)