test_modeling_gemma.py 33.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Gemma model. """
import tempfile
import unittest

import pytest
from parameterized import parameterized

from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaConfig, is_torch_available
from transformers.testing_utils import (
24
    is_flaky,
25
26
    require_bitsandbytes,
    require_flash_attn,
27
    require_read_token,
28
29
    require_torch,
    require_torch_gpu,
30
    require_torch_sdpa,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    slow,
    torch_device,
)

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import GemmaForCausalLM, GemmaForSequenceClassification, GemmaModel


class GemmaModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_key_value_heads=2,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        pad_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.pad_token_id = pad_token_id
        self.scope = scope
        self.head_dim = self.hidden_size // self.num_attention_heads

    # Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    # Ignore copy
    def get_config(self):
        return GemmaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            num_key_value_heads=self.num_key_value_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
            head_dim=self.head_dim,
        )

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Gemma
    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = GemmaModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Gemma
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = GemmaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Gemma
    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = GemmaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Gemma
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = GemmaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Gemma
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class GemmaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (GemmaModel, GemmaForCausalLM, GemmaForSequenceClassification) if is_torch_available() else ()
    all_generative_model_classes = (GemmaForCausalLM,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "feature-extraction": GemmaModel,
            "text-classification": GemmaForSequenceClassification,
            "text-generation": GemmaForCausalLM,
            "zero-shot": GemmaForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_headmasking = False
    test_pruning = False

302
303
304
305
    # Need to remove 0.9 in `test_cpu_offload`
    # This is because we are hitting edge cases with the causal_mask buffer
    model_split_percents = [0.5, 0.6]

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

    def setUp(self):
        self.model_tester = GemmaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=GemmaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_Gemma_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        print(config)
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = GemmaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Gemma_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = GemmaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Gemma_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = GemmaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    @unittest.skip("TODO @gante fix this for Llama")
    @parameterized.expand([(1, False), (1, True), (4, False)])
    def test_new_cache_format(self, num_beams, do_sample):
        pass

    @unittest.skip("Gemma buffers include complex numbers, which breaks this test")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip("Gemma uses GQA on all models so the KV cache is a non standard format")
    def test_past_key_values_format(self):
        pass

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
        import torch

        max_new_tokens = 30

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # NOTE: Gemma apparently does not support right padding + use_cache with FA2.
                dummy_attention_mask[:, -1] = 1

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
                )

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
Yoach Lacombe's avatar
Yoach Lacombe committed
432
    def test_flash_attn_2_inference_equivalence_right_padding(self):
433
434
        self.skipTest("Gemma flash attention does not support right padding")

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_equivalence(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                return

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa"
                )
                model_sdpa.to(torch_device)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager")
                model.to(torch_device)

                dummy_input = inputs_dict[model_class.main_input_name]
                dummy_input = dummy_input.to(torch_device)
                outputs = model(dummy_input, output_hidden_states=True)
                outputs_sdpa = model_sdpa(dummy_input, output_hidden_states=True)

                logits = outputs.hidden_states[-1]
                logits_sdpa = outputs_sdpa.hidden_states[-1]

                # gemma sdpa needs a high tolerance
                assert torch.allclose(logits_sdpa, logits, atol=3e-3)

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
470
    @is_flaky
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    @slow
    def test_flash_attn_2_equivalence(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager")
                model.to(torch_device)

                dummy_input = inputs_dict[model_class.main_input_name]
                dummy_input = dummy_input.to(torch_device)
                outputs = model(dummy_input, output_hidden_states=True)
                outputs_fa = model_fa(dummy_input, output_hidden_states=True)

                logits = outputs.hidden_states[-1]
                logits_fa = outputs_fa.hidden_states[-1]

                # gemma flash attention 2 needs a high tolerance
                assert torch.allclose(logits_fa, logits, atol=3e-3)

501
502

@slow
503
@require_torch_gpu
504
505
class GemmaIntegrationTest(unittest.TestCase):
    input_text = ["Hello I am doing", "Hi today"]
506
507
508
    # This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
    # Depending on the hardware we get different logits / generations
    cuda_compute_capability_major_version = None
509

510
511
512
513
514
515
516
    @classmethod
    def setUpClass(cls):
        if is_torch_available() and torch.cuda.is_available():
            # 8 is for A100 / A10 and 7 for T4
            cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]

    @require_read_token
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    def test_model_2b_fp32(self):
        model_id = "google/gemma-2b"
        EXPECTED_TEXTS = [
            "Hello I am doing a project on the 1990s and I need to know what the most popular music",
            "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

534
    @require_read_token
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    def test_model_2b_fp16(self):
        model_id = "google/gemma-2b"
        EXPECTED_TEXTS = [
            "Hello I am doing a project on the 1990s and I need to know what the most popular music",
            "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
            torch_device
        )

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

554
    @require_read_token
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    def test_model_2b_fp16_static_cache(self):
        model_id = "google/gemma-2b"
        EXPECTED_TEXTS = [
            "Hello I am doing a project on the 1990s and I need to know what the most popular music",
            "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
            torch_device
        )

        model.generation_config.cache_implementation = "static"

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

576
    @require_read_token
577
578
    def test_model_2b_bf16(self):
        model_id = "google/gemma-2b"
579
580
581
582
583
584
585
586
587
588
        EXPECTED_TEXTS = {
            7: [
                "Hello I am doing a project on the 1990s and I need to know what the most popular music",
                "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
            ],
            8: [
                "Hello I am doing a project on the 1990s and I need to know what the most popular music",
                "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
            ],
        }
589
590
591
592
593
594
595
596
597
598

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
            torch_device
        )

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
599

600
        self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version])
601

602
    @require_read_token
603
604
    def test_model_2b_eager(self):
        model_id = "google/gemma-2b"
605
606
607
608
609
610
611
612
613
614
        EXPECTED_TEXTS = {
            7: [
                "Hello I am doing a project on the 1990s and I am looking for some information on the ",
                "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
            ],
            8: [
                "Hello I am doing a project on the 1990s and I need to know what the most popular music",
                "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
            ],
        }
615
616
617
618
619
620
621
622
623
624
625
626

        model = AutoModelForCausalLM.from_pretrained(
            model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
        )
        model.to(torch_device)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

627
        self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version])
628
629

    @require_torch_sdpa
630
    @require_read_token
631
632
    def test_model_2b_sdpa(self):
        model_id = "google/gemma-2b"
633
634
635
636
637
638
639
640
641
642
        EXPECTED_TEXTS = {
            7: [
                "Hello I am doing a project on the 1990s and I need to know what the most popular music",
                "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
            ],
            8: [
                "Hello I am doing a project on the 1990s and I need to know what the most popular music",
                "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
            ],
        }
643
644
645
646
647
648
649
650
651
652
653
654

        model = AutoModelForCausalLM.from_pretrained(
            model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa"
        )
        model.to(torch_device)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

655
        self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version])
656
657
658

    @pytest.mark.flash_attn_test
    @require_flash_attn
659
    @require_read_token
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    def test_model_2b_flash_attn(self):
        model_id = "google/gemma-2b"
        EXPECTED_TEXTS = [
            "Hello I am doing a project on the 1990s and I need to know what the most popular music",
            "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
        ]

        model = AutoModelForCausalLM.from_pretrained(
            model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
        )
        model.to(torch_device)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
677
678
679
680

        self.assertEqual(output_text, EXPECTED_TEXTS)

    @require_bitsandbytes
681
    @require_read_token
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    def test_model_2b_4bit(self):
        model_id = "google/gemma-2b"
        EXPECTED_TEXTS = [
            "Hello I am doing a project and I need to make a 3d model of a house. I have been using",
            "Hi today I'd like to share with you my experience with the new wattpad wattpad wattpad wattpad wattpad wattpad wattpad",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

    @unittest.skip("The test will not fit our CI runners")
700
    @require_read_token
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    def test_model_7b_fp32(self):
        model_id = "google/gemma-7b"
        EXPECTED_TEXTS = [
            "Hello my name is ***** ***** I will be assisting you today. I am sorry to hear about your issue. I will",
            "Hi,\n\nI have a problem with my 2005 1.6 16",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

718
    @require_read_token
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    def test_model_7b_fp16(self):
        model_id = "google/gemma-7b"
        EXPECTED_TEXTS = [
            """Hello I am doing a project on a 1999 4.0L 4x4. I""",
            "Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
            torch_device
        )

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

738
    @require_read_token
739
740
    def test_model_7b_bf16(self):
        model_id = "google/gemma-7b"
741
742
743
744
745
746
747
748
749
750
        EXPECTED_TEXTS = {
            7: [
                """Hello I am doing a project on a 1991 240sx and I am trying to find""",
                "Hi today I am going to show you how to make a very simple and easy to make a very simple and",
            ],
            8: [
                "Hello I am doing a project for my school and I am trying to make a program that will read a .txt file",
                "Hi today I am going to show you how to make a very simple and easy to make a very simple and",
            ],
        }
751
752
753
754
755
756
757
758
759
760
761

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
            torch_device
        )

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

762
        self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version])
763

764
    @require_read_token
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
    def test_model_7b_fp16_static_cache(self):
        model_id = "google/gemma-7b"
        EXPECTED_TEXTS = [
            """Hello I am doing a project on a 1999 4.0L 4x4. I""",
            "Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
            torch_device
        )

        model.generation_config.cache_implementation = "static"

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

        self.assertEqual(output_text, EXPECTED_TEXTS)

    @require_bitsandbytes
787
    @require_read_token
788
789
    def test_model_7b_4bit(self):
        model_id = "google/gemma-7b"
790
791
792
793
794
795
796
797
798
799
        EXPECTED_TEXTS = {
            7: [
                "Hello I am doing a project for my school and I am trying to make a program that will take a number and then",
                """Hi today I am going to talk about the new update for the game called "The new update" and I""",
            ],
            8: [
                "Hello I am doing a project for my school and I am trying to make a program that will take a number and then",
                "Hi today I am going to talk about the best way to get rid of acne. miniaturing is a very",
            ],
        }
800
801
802
803
804
805
806
807
808

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

809
        self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version])