test_modeling_auto.py 10.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import unittest
thomwolf's avatar
thomwolf committed
18

19
from transformers import is_torch_available
20
21
22
23
24
25
26
from transformers.testing_utils import (
    DUMMY_UNKWOWN_IDENTIFIER,
    SMALL_MODEL_IDENTIFIER,
    require_scatter,
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
27

28

29
if is_torch_available():
30
31
32
    from transformers import (
        AutoConfig,
        AutoModel,
33
34
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
35
36
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
37
        AutoModelForSeq2SeqLM,
38
        AutoModelForSequenceClassification,
39
        AutoModelForTableQuestionAnswering,
40
        AutoModelForTokenClassification,
41
42
43
44
45
46
        AutoModelWithLMHead,
        BertConfig,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
47
        BertForTokenClassification,
48
49
50
51
52
53
        BertModel,
        GPT2Config,
        GPT2LMHeadModel,
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
54
55
        TapasConfig,
        TapasForQuestionAnswering,
56
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
57
    from transformers.models.auto.modeling_auto import (
58
59
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
60
61
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
62
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
63
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
64
        MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
65
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
66
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
67
68
        MODEL_WITH_LM_HEAD_MAPPING,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
71
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
72
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
73
74


75
@require_torch
thomwolf's avatar
thomwolf committed
76
class AutoModelTest(unittest.TestCase):
77
    @slow
thomwolf's avatar
thomwolf committed
78
    def test_model_from_pretrained(self):
79
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
80
81
82
83
84
85
86
87
88
89
90
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

thomwolf's avatar
thomwolf committed
91
92
    @slow
    def test_model_for_pretraining_from_pretrained(self):
93
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100
101
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
102
103
104
            # Only one value should not be initialized and in the missing keys.
            missing_keys = loading_info.pop("missing_keys")
            self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys)
105
            for key, value in loading_info.items():
106
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
107

108
    @slow
LysandreJik's avatar
LysandreJik committed
109
    def test_lmhead_model_from_pretrained(self):
110
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
111
112
113
114
115
116
117
118
119
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

156
    @slow
LysandreJik's avatar
LysandreJik committed
157
    def test_sequence_classification_model_from_pretrained(self):
158
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
159
160
161
162
163
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
164
165
166
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
167
168
169
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

170
    @slow
LysandreJik's avatar
LysandreJik committed
171
    def test_question_answering_model_from_pretrained(self):
172
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
173
174
175
176
177
178
179
180
181
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    @slow
    @require_scatter
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

197
198
    @slow
    def test_token_classification_model_from_pretrained(self):
199
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
200
201
202
203
204
205
206
207
208
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
209
210
211
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
212
213
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
214
215
216
217

    def test_from_identifier_from_model_type(self):
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
        self.assertIsInstance(model, RobertaForMaskedLM)
218
219
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
220
221
222
223
224
225
226
227
228

    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models

        mappings = (
            MODEL_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
229
            MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
230
231
232
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
233
234
235
            MODEL_FOR_CAUSAL_LM_MAPPING,
            MODEL_FOR_MASKED_LM_MAPPING,
            MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
236
237
238
239
240
241
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
Sam Shleifer's avatar
Sam Shleifer committed
242
243
244
245
246
247
                    assert not issubclass(
                        child_config, parent_config
                    ), "{child_config.__name__} is child of {parent_config.__name__}"
                    assert not issubclass(
                        child_model, parent_model
                    ), "{child_config.__name__} is child of {parent_config.__name__}"