test_modeling_zoedepth.py 9.33 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch ZoeDepth model."""

import unittest

from transformers import Dinov2Config, ZoeDepthConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import ZoeDepthForDepthEstimation


if is_vision_available():
    from PIL import Image

    from transformers import ZoeDepthImageProcessor


class ZoeDepthModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        num_channels=3,
        image_size=32,
        patch_size=16,
        use_labels=True,
        num_labels=3,
        is_training=True,
        hidden_size=4,
        num_hidden_layers=2,
        num_attention_heads=2,
        intermediate_size=8,
        out_features=["stage1", "stage2"],
        apply_layernorm=False,
        reshape_hidden_states=False,
        neck_hidden_sizes=[2, 2],
        fusion_hidden_size=6,
        bottleneck_features=6,
        num_out_features=[6, 6, 6, 6],
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.patch_size = patch_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.out_features = out_features
        self.apply_layernorm = apply_layernorm
        self.reshape_hidden_states = reshape_hidden_states
        self.use_labels = use_labels
        self.num_labels = num_labels
        self.is_training = is_training
        self.neck_hidden_sizes = neck_hidden_sizes
        self.fusion_hidden_size = fusion_hidden_size
        self.bottleneck_features = bottleneck_features
        self.num_out_features = num_out_features
        # ZoeDepth's sequence length
        self.seq_length = (self.image_size // self.patch_size) ** 2 + 1

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ZoeDepthConfig(
            backbone_config=self.get_backbone_config(),
            backbone=None,
            neck_hidden_sizes=self.neck_hidden_sizes,
            fusion_hidden_size=self.fusion_hidden_size,
            bottleneck_features=self.bottleneck_features,
            num_out_features=self.num_out_features,
        )

    def get_backbone_config(self):
        return Dinov2Config(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            is_training=self.is_training,
            out_features=self.out_features,
            reshape_hidden_states=self.reshape_hidden_states,
        )

    def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = ZoeDepthForDepthEstimation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class ZoeDepthModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ZoeDepth does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (ZoeDepthForDepthEstimation,) if is_torch_available() else ()
    pipeline_model_mapping = {"depth-estimation": ZoeDepthForDepthEstimation} if is_torch_available() else {}

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ZoeDepthModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=ZoeDepthConfig, has_text_modality=False, hidden_size=37, common_properties=[]
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model and hence no input_embeddings")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model and hence no input_embeddings")
    def test_model_get_set_embeddings(self):
        pass

    def test_for_depth_estimation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)

    @unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model and hence no input_embeddings")
    def test_model_common_attributes(self):
        pass

    @unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="ZoeDepth with AutoBackbone does not have a base model")
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="ZoeDepth does not support training yet")
    def test_training(self):
        pass

    @unittest.skip(reason="ZoeDepth does not support training yet")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="ZoeDepth does not support training yet")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="ZoeDepth does not support training yet")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model_name = "Intel/zoedepth-nyu"
        model = ZoeDepthForDepthEstimation.from_pretrained(model_name)
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
@slow
class ZoeDepthModelIntegrationTest(unittest.TestCase):
    def test_inference_depth_estimation(self):
        image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu")
        model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu").to(torch_device)

        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
            predicted_depth = outputs.predicted_depth

        # verify the predicted depth
        expected_shape = torch.Size((1, 384, 512))
        self.assertEqual(predicted_depth.shape, expected_shape)

        expected_slice = torch.tensor(
            [[1.0020, 1.0219, 1.0389], [1.0349, 1.0816, 1.1000], [1.0576, 1.1094, 1.1249]],
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))

    def test_inference_depth_estimation_multiple_heads(self):
        image_processor = ZoeDepthImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
        model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti").to(torch_device)

        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
            predicted_depth = outputs.predicted_depth

        # verify the predicted depth
        expected_shape = torch.Size((1, 384, 512))
        self.assertEqual(predicted_depth.shape, expected_shape)

        expected_slice = torch.tensor(
            [[1.1571, 1.1438, 1.1783], [1.2163, 1.2036, 1.2320], [1.2688, 1.2461, 1.2734]],
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))