"docs/source/vscode:/vscode.git/clone" did not exist on "44a5b4bbe7864ced756f6aac7f6383438923082b"
lightning_base.py 12 KB
Newer Older
1
import argparse
2
import logging
3
4
import os
import random
5
6
from pathlib import Path
from typing import Any, Dict
7
8
9
10
11
12
13

import numpy as np
import pytorch_lightning as pl
import torch

from transformers import (
    AdamW,
14
15
16
17
    AutoConfig,
    AutoModel,
    AutoModelForPreTraining,
    AutoModelForQuestionAnswering,
18
    AutoModelForSeq2SeqLM,
19
20
21
22
    AutoModelForSequenceClassification,
    AutoModelForTokenClassification,
    AutoModelWithLMHead,
    AutoTokenizer,
23
24
    PretrainedConfig,
    PreTrainedTokenizer,
25
26
27
28
    get_linear_schedule_with_warmup,
)


29
30
31
logger = logging.getLogger(__name__)


32
33
34
35
36
37
38
MODEL_MODES = {
    "base": AutoModel,
    "sequence-classification": AutoModelForSequenceClassification,
    "question-answering": AutoModelForQuestionAnswering,
    "pretraining": AutoModelForPreTraining,
    "token-classification": AutoModelForTokenClassification,
    "language-modeling": AutoModelWithLMHead,
39
40
    "summarization": AutoModelForSeq2SeqLM,
    "translation": AutoModelForSeq2SeqLM,
41
42
43
}


44
def set_seed(args: argparse.Namespace):
45
46
47
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
48
    if args.gpus > 0:
49
50
51
52
        torch.cuda.manual_seed_all(args.seed)


class BaseTransformer(pl.LightningModule):
53
54
55
56
57
58
59
60
61
62
    def __init__(
        self,
        hparams: argparse.Namespace,
        num_labels=None,
        mode="base",
        config=None,
        tokenizer=None,
        model=None,
        **config_kwargs
    ):
63
64
        "Initialize a model."

Julien Chaumond's avatar
Julien Chaumond committed
65
        super().__init__()
66
        self.hparams = hparams
67
68
69
        self.step_count = 0
        self.tfmr_ckpts = {}
        self.output_dir = Path(self.hparams.output_dir)
70
        cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        if config is None:
            self.config = AutoConfig.from_pretrained(
                self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,
                **({"num_labels": num_labels} if num_labels is not None else {}),
                cache_dir=cache_dir,
                **config_kwargs,
            )
        else:
            self.config: PretrainedConfig = config
        if tokenizer is None:
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,
                cache_dir=cache_dir,
            )
        else:
            self.tokenizer: PreTrainedTokenizer = tokenizer
        if model is None:
            self.model_type = MODEL_MODES[mode]
            self.model = self.model_type.from_pretrained(
                self.hparams.model_name_or_path,
                from_tf=bool(".ckpt" in self.hparams.model_name_or_path),
                config=self.config,
                cache_dir=cache_dir,
            )
        else:
            self.model_type = None
            self.model = model

    def load_hf_checkpoint(self, *args, **kwargs):
        self.model = self.model_type.from_pretrained(*args, **kwargs)
101
102

    def is_logger(self):
103
        return self.trainer.proc_rank <= 0
104
105
106
107

    def configure_optimizers(self):
        "Prepare optimizer and schedule (linear warmup and decay)"

108
        model = self.model
109
110
111
112
113
114
115
116
117
118
119
120
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.hparams.weight_decay,
            },
            {
                "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
121
        self.opt = optimizer
122
123
124
        return [optimizer]

    def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None):
125
126
127
128
        if self.trainer.use_tpu:
            xm.optimizer_step(optimizer)
        else:
            optimizer.step()
129
        optimizer.zero_grad()
130
        self.lr_scheduler.step()
131
132

    def get_tqdm_dict(self):
133
134
        avg_loss = getattr(self.trainer, "avg_loss", 0.0)
        tqdm_dict = {"loss": "{:.3f}".format(avg_loss), "lr": self.lr_scheduler.get_last_lr()[-1]}
135
136
137
138
139
140
141
142
143
        return tqdm_dict

    def test_step(self, batch, batch_nb):
        return self.validation_step(batch, batch_nb)

    def test_end(self, outputs):
        return self.validation_end(outputs)

    def train_dataloader(self):
144
145
146
147
148
149
150
151
152
153
154
155
156
        train_batch_size = self.hparams.train_batch_size
        dataloader = self.load_dataset("train", train_batch_size)

        t_total = (
            (len(dataloader.dataset) // (train_batch_size * max(1, self.hparams.n_gpu)))
            // self.hparams.gradient_accumulation_steps
            * float(self.hparams.num_train_epochs)
        )
        scheduler = get_linear_schedule_with_warmup(
            self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=t_total
        )
        self.lr_scheduler = scheduler
        return dataloader
157
158
159
160
161
162
163

    def val_dataloader(self):
        return self.load_dataset("dev", self.hparams.eval_batch_size)

    def test_dataloader(self):
        return self.load_dataset("test", self.hparams.eval_batch_size)

164
165
166
167
168
169
170
171
172
173
    def _feature_file(self, mode):
        return os.path.join(
            self.hparams.data_dir,
            "cached_{}_{}_{}".format(
                mode,
                list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(),
                str(self.hparams.max_seq_length),
            ),
        )

174
175
176
177
178
179
180
181
182
    @pl.utilities.rank_zero_only
    def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
        save_path = self.output_dir.joinpath("best_tfmr")
        save_path.mkdir(exist_ok=True)
        self.model.config.save_step = self.step_count
        self.model.save_pretrained(save_path)
        self.tokenizer.save_pretrained(save_path)
        self.tfmr_ckpts[self.step_count] = save_path

183
184
185
186
187
188
189
    @staticmethod
    def add_model_specific_args(parser, root_dir):
        parser.add_argument(
            "--model_name_or_path",
            default=None,
            type=str,
            required=True,
Julien Chaumond's avatar
Julien Chaumond committed
190
            help="Path to pretrained model or model identifier from huggingface.co/models",
191
192
193
194
195
196
        )
        parser.add_argument(
            "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
        )
        parser.add_argument(
            "--tokenizer_name",
197
            default=None,
198
199
200
201
202
203
204
205
206
207
208
209
            type=str,
            help="Pretrained tokenizer name or path if not the same as model_name",
        )
        parser.add_argument(
            "--cache_dir",
            default="",
            type=str,
            help="Where do you want to store the pre-trained models downloaded from s3",
        )
        parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
        parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
        parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
210
        parser.add_argument("--warmup_steps", default=500, type=int, help="Linear warmup over warmup_steps.")
211
212
213
214
215
216
217
218
        parser.add_argument(
            "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform."
        )

        parser.add_argument("--train_batch_size", default=32, type=int)
        parser.add_argument("--eval_batch_size", default=32, type=int)


219
class LoggingCallback(pl.Callback):
220
    def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
221
222
223
224
225
226
227
228
        logger.info("***** Validation results *****")
        if pl_module.is_logger():
            metrics = trainer.callback_metrics
            # Log results
            for key in sorted(metrics):
                if key not in ["log", "progress_bar"]:
                    logger.info("{} = {}\n".format(key, str(metrics[key])))

229
    def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        logger.info("***** Test results *****")

        if pl_module.is_logger():
            metrics = trainer.callback_metrics

            # Log and save results to file
            output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt")
            with open(output_test_results_file, "w") as writer:
                for key in sorted(metrics):
                    if key not in ["log", "progress_bar"]:
                        logger.info("{} = {}\n".format(key, str(metrics[key])))
                        writer.write("{} = {}\n".format(key, str(metrics[key])))


244
245
def add_generic_args(parser, root_dir) -> None:
    #  TODO(SS): allow all pl args? parser = pl.Trainer.add_argparse_args(parser)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )

    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
267
268
    parser.add_argument("--fast_dev_run", action="store_true")
    parser.add_argument("--gpus", type=int, default=1)
269
    parser.add_argument("--n_tpu_cores", type=int, default=0)
270
271
272
273
274
275
276
277
278
279
280
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )

    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    parser.add_argument("--resume_from_checkpoint", type=str, default=None)
    parser.add_argument("--val_check_interval", default=1.0, type=float)


def generic_train(
    model: BaseTransformer,
    args: argparse.Namespace,
    early_stopping_callback=False,
    logger=True,  # can pass WandbLogger() here
    extra_callbacks=[],
    checkpoint_callback=None,
    logging_callback=None,
    **extra_train_kwargs
):
295
296
    # init model
    set_seed(args)
297
298
299
300
301
302
303
304
    odir = Path(model.hparams.output_dir)
    odir.mkdir(exist_ok=True)
    if checkpoint_callback is None:
        checkpoint_callback = pl.callbacks.ModelCheckpoint(
            filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1
        )
    if logging_callback is None:
        logging_callback = LoggingCallback()
305

306
    train_params = {}
307

srush's avatar
srush committed
308
309
310
311
    if args.fp16:
        train_params["use_amp"] = args.fp16
        train_params["amp_level"] = args.fp16_opt_level

312
313
314
315
316
317
318
    if args.n_tpu_cores > 0:
        global xm
        import torch_xla.core.xla_model as xm

        train_params["num_tpu_cores"] = args.n_tpu_cores
        train_params["gpus"] = 0

319
    if args.gpus > 1:
srush's avatar
srush committed
320
321
        train_params["distributed_backend"] = "ddp"

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    trainer = pl.Trainer(
        logger=logger,
        accumulate_grad_batches=args.gradient_accumulation_steps,
        gpus=args.gpus,
        max_epochs=args.num_train_epochs,
        early_stop_callback=early_stopping_callback,
        gradient_clip_val=args.max_grad_norm,
        checkpoint_callback=checkpoint_callback,
        callbacks=[logging_callback] + extra_callbacks,
        fast_dev_run=args.fast_dev_run,
        val_check_interval=args.val_check_interval,
        weights_summary=None,
        resume_from_checkpoint=args.resume_from_checkpoint,
        **train_params,
    )
srush's avatar
srush committed
337

338
339
    if args.do_train:
        trainer.fit(model)
340
341
    trainer.logger.log_hyperparams(args)
    trainer.logger.save()
342
    return trainer