test_modeling_udop.py 19.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import inspect
import unittest

from huggingface_hub import hf_hub_download

from transformers import UdopConfig, is_torch_available, is_vision_available
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    require_vision,
    slow,
    torch_device,
)
from transformers.utils import cached_property

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import UdopEncoderModel, UdopForConditionalGeneration, UdopModel, UdopProcessor


if is_vision_available():
    from PIL import Image


class UdopModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
        decoder_seq_length=9,
        # For common tests
        is_training=True,
        use_attention_mask=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=32,
        dropout_rate=0.1,
        initializer_factor=0.002,
        eos_token_id=1,
        pad_token_id=0,
        scope=None,
        decoder_layers=None,
        range_bbox=1000,
        decoder_start_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.scope = None
        self.decoder_layers = decoder_layers
        self.range_bbox = range_bbox
        self.decoder_start_token_id = decoder_start_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
        bbox = ids_tensor([self.batch_size, self.encoder_seq_length, 4], self.range_bbox).float()
        # Ensure that bbox is legal
        for i in range(bbox.shape[0]):
            for j in range(bbox.shape[1]):
                if bbox[i, j, 3] < bbox[i, j, 1]:
                    t = bbox[i, j, 3]
                    bbox[i, j, 3] = bbox[i, j, 1]
                    bbox[i, j, 1] = t
                if bbox[i, j, 2] < bbox[i, j, 0]:
                    t = bbox[i, j, 2]
                    bbox[i, j, 2] = bbox[i, j, 0]
                    bbox[i, j, 0] = t
        decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        decoder_attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
            decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = self.get_config()

        return (
            config,
            input_ids,
            bbox,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        )

    def get_config(self):
        return UdopConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        bbox,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UdopModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            bbox=bbox,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
        result = model(input_ids=input_ids, bbox=bbox, decoder_input_ids=decoder_input_ids)
        decoder_output = result.last_hidden_state
        decoder_past = result.past_key_values
        encoder_output = result.encoder_last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
        self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
        # There should be `num_layers` key value embeddings stored in decoder_past
        self.parent.assertEqual(len(decoder_past), config.num_layers)
        # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
        self.parent.assertEqual(len(decoder_past[0]), 4)

    def create_and_check_with_lm_head(
        self,
        config,
        input_ids,
        bbox,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UdopForConditionalGeneration(config=config).to(torch_device).eval()
        outputs = model(
            input_ids=input_ids,
            bbox=bbox,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            labels=lm_labels,
        )
        self.parent.assertEqual(len(outputs), 4)
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
        self.parent.assertEqual(outputs["loss"].size(), ())

    def create_and_check_generate_with_past_key_values(
        self,
        config,
        input_ids,
        bbox,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UdopForConditionalGeneration(config=config).to(torch_device).eval()
        torch.manual_seed(0)
        output_without_past_cache = model.generate(
            input_ids[:1], bbox=bbox[:1, :, :], num_beams=2, max_length=5, do_sample=True, use_cache=False
        )
        torch.manual_seed(0)
        output_with_past_cache = model.generate(
            input_ids[:1], bbox=bbox[:1, :, :], num_beams=2, max_length=5, do_sample=True
        )
        self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))

NielsRogge's avatar
NielsRogge committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def create_and_check_model_fp16_forward(
        self,
        config,
        input_ids,
        bbox,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UdopForConditionalGeneration(config=config).to(torch_device).half().eval()
        output = model(input_ids, bbox=bbox, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids).logits
        self.parent.assertFalse(torch.isnan(output).any().item())

NielsRogge's avatar
NielsRogge committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            bbox,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "bbox": bbox,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "use_cache": False,
        }
        return config, inputs_dict


@require_torch
class UdopModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            UdopModel,
            UdopForConditionalGeneration,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (UdopForConditionalGeneration,) if is_torch_available() else ()
    pipeline_model_mapping = {"feature-extraction": UdopModel} if is_torch_available() else {}
    fx_compatible = False
    test_pruning = False
    test_torchscript = False
    test_head_masking = False
    test_resize_embeddings = True
    test_model_parallel = False
    is_encoder_decoder = True
NielsRogge's avatar
NielsRogge committed
285
    test_cpu_offload = False
NielsRogge's avatar
NielsRogge committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    # The small UDOP model needs higher percentages for CPU/MP tests
    model_split_percents = [0.8, 0.9]

    def setUp(self):
        self.model_tester = UdopModelTester(self)
        self.config_tester = ConfigTester(self, config_class=UdopConfig, d_model=37)

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
        if model_class.__name__ == "UdopForConditionalGeneration":
            if return_labels:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )

        return inputs_dict

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_with_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_with_lm_head(*config_and_inputs)

    def test_generate_with_past_key_values(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)

    @unittest.skip("Gradient checkpointing is not supported by this model")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = sorted([*signature.parameters.keys()])

            expected_arg_names = [
                "attention_mask",
                "bbox",
                "cross_attn_head_mask",
                "decoder_attention_mask",
                "decoder_head_mask",
                "decoder_input_ids",
                "decoder_inputs_embeds",
                "encoder_outputs",
                "head_mask",
                "input_ids",
                "inputs_embeds",
            ]
            if model_class in self.all_generative_model_classes:
                expected_arg_names.append(
                    "labels",
                )
                expected_arg_names = sorted(expected_arg_names)
            self.assertListEqual(sorted(arg_names[: len(expected_arg_names)]), expected_arg_names)

    @unittest.skip(
        "Not currently compatible. Fails with - NotImplementedError: Cannot copy out of meta tensor; no data!"
    )
    def test_save_load_low_cpu_mem_usage(self):
        pass

    @slow
    def test_model_from_pretrained(self):
376
377
378
        model_name = "microsoft/udop-large"
        model = UdopForConditionalGeneration.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508


class UdopEncoderOnlyModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        seq_length=7,
        # For common tests
        is_training=False,
        use_attention_mask=True,
        hidden_size=32,
        num_hidden_layers=5,
        decoder_layers=2,
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=32,
        dropout_rate=0.1,
        initializer_factor=0.002,
        eos_token_id=1,
        pad_token_id=0,
        scope=None,
        range_bbox=1000,
    ):
        self.parent = parent
        self.batch_size = batch_size
        # For common tests
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.decoder_layers = decoder_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.scope = None
        self.range_bbox = range_bbox

    def get_config(self):
        return UdopConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            is_encoder_decoder=False,
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).float()
        # Ensure that bbox is legal
        for i in range(bbox.shape[0]):
            for j in range(bbox.shape[1]):
                if bbox[i, j, 3] < bbox[i, j, 1]:
                    t = bbox[i, j, 3]
                    bbox[i, j, 3] = bbox[i, j, 1]
                    bbox[i, j, 1] = t
                if bbox[i, j, 2] < bbox[i, j, 0]:
                    t = bbox[i, j, 2]
                    bbox[i, j, 2] = bbox[i, j, 0]
                    bbox[i, j, 0] = t

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        config = self.get_config()

        return (
            config,
            input_ids,
            bbox,
            attention_mask,
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            bbox,
            attention_mask,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "bbox": bbox,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict

    def create_and_check_model(
        self,
        config,
        input_ids,
        bbox,
        attention_mask,
    ):
        model = UdopEncoderModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            bbox=bbox,
            attention_mask=attention_mask,
        )
        encoder_output = result.last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_fp16_forward(
        self,
        config,
        input_ids,
NielsRogge's avatar
NielsRogge committed
509
        bbox,
NielsRogge's avatar
NielsRogge committed
510
511
512
        attention_mask,
    ):
        model = UdopEncoderModel(config=config).to(torch_device).half().eval()
NielsRogge's avatar
NielsRogge committed
513
        output = model(input_ids, bbox=bbox, attention_mask=attention_mask)["last_hidden_state"]
NielsRogge's avatar
NielsRogge committed
514
515
516
517
518
519
520
521
522
        self.parent.assertFalse(torch.isnan(output).any().item())


class UdopEncoderOnlyModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (UdopEncoderModel,) if is_torch_available() else ()
    test_pruning = False
    test_torchscript = False
    test_head_masking = False
    test_resize_embeddings = False
NielsRogge's avatar
NielsRogge committed
523
    test_model_parallel = False
NielsRogge's avatar
NielsRogge committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    all_parallelizable_model_classes = (UdopEncoderModel,) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = UdopEncoderOnlyModelTester(self)
        self.config_tester = ConfigTester(self, config_class=UdopConfig, d_model=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(
        "Not currently compatible. Fails with - NotImplementedError: Cannot copy out of meta tensor; no data!"
    )
    def test_save_load_low_cpu_mem_usage(self):
        pass


@require_torch
@require_sentencepiece
@require_tokenizers
@require_vision
@slow
class UdopModelIntegrationTests(unittest.TestCase):
    @cached_property
    def image(self):
        filepath = hf_hub_download(
            repo_id="hf-internal-testing/fixtures_docvqa", filename="document_2.png", repo_type="dataset"
        )
        image = Image.open(filepath).convert("RGB")

        return image

    @cached_property
    def processor(self):
        return UdopProcessor.from_pretrained("microsoft/udop-large")

    @cached_property
    def model(self):
        return UdopForConditionalGeneration.from_pretrained("microsoft/udop-large").to(torch_device)

    def test_conditional_generation(self):
        processor = self.processor
        model = self.model

        prompt = "Question answering. In which year is the report made?"
NielsRogge's avatar
NielsRogge committed
572
        encoding = processor(images=self.image, text=prompt, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
573
574
575
576

        predicted_ids = model.generate(**encoding)

        predicted_text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
577
        self.assertEqual(predicted_text, "2013")