"mmdet/vscode:/vscode.git/clone" did not exist on "22e2caf69681359e0b0a16ce2594c5cbe825c6d4"
modeling_common_test.py 37.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

17
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
18
19
import json
import logging
20
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import random
thomwolf's avatar
thomwolf committed
22
import shutil
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import sys
24
import tempfile
thomwolf's avatar
thomwolf committed
25
import unittest
Aymeric Augustin's avatar
Aymeric Augustin committed
26
import uuid
thomwolf's avatar
thomwolf committed
27

28
from transformers import is_torch_available
29

30
from .utils import CACHE_DIR, require_torch, slow, torch_device
31

Aymeric Augustin's avatar
Aymeric Augustin committed
32

33
if is_torch_available():
thomwolf's avatar
thomwolf committed
34
    import torch
35
    import numpy as np
thomwolf's avatar
thomwolf committed
36

37
38
39
40
41
42
43
44
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
        BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
thomwolf's avatar
thomwolf committed
45

46
47
48
49
if sys.version_info[0] == 2:

    class TemporaryDirectory(object):
        """Context manager for tempfile.mkdtemp() so it's usable with "with" statement."""
50

51
52
53
        def __enter__(self):
            self.name = tempfile.mkdtemp()
            return self.name
54

55
56
        def __exit__(self, exc_type, exc_value, traceback):
            shutil.rmtree(self.name)
57
58


59
60
61
else:
    TemporaryDirectory = tempfile.TemporaryDirectory
    unicode = str
thomwolf's avatar
thomwolf committed
62

63

64
65
66
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
67
        if "_range" in key or "_std" in key or "initializer_factor" in key:
68
69
70
            setattr(configs_no_init, key, 0.0)
    return configs_no_init

thomwolf's avatar
thomwolf committed
71

72
class CommonTestCases:
73
    @require_torch
thomwolf's avatar
thomwolf committed
74
75
76
77
78
79
80
    class CommonModelTester(unittest.TestCase):

        model_tester = None
        all_model_classes = ()
        test_torchscript = True
        test_pruning = True
        test_resize_embeddings = True
LysandreJik's avatar
LysandreJik committed
81
        test_head_masking = True
thomwolf's avatar
thomwolf committed
82
        is_encoder_decoder = False
thomwolf's avatar
thomwolf committed
83

84
85
86
87
88
        def test_save_load(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                model = model_class(config)
89
                model.to(torch_device)
90
91
92
                model.eval()
                with torch.no_grad():
                    outputs = model(**inputs_dict)
93
94
                out_2 = outputs[0].numpy()
                out_2[np.isnan(out_2)] = 0
95
96
97
98

                with TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model = model_class.from_pretrained(tmpdirname)
99
                    model.to(torch_device)
100
101
                    with torch.no_grad():
                        after_outputs = model(**inputs_dict)
thomwolf's avatar
no nans  
thomwolf committed
102
103

                    # Make sure we don't have nans
104
                    out_1 = after_outputs[0].cpu().numpy()
thomwolf's avatar
thomwolf committed
105
                    out_1[np.isnan(out_1)] = 0
thomwolf's avatar
no nans  
thomwolf committed
106
                    max_diff = np.amax(np.abs(out_1 - out_2))
107
108
                    self.assertLessEqual(max_diff, 1e-5)

thomwolf's avatar
thomwolf committed
109
110
111
112
113
114
115
116
        def test_initialization(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            configs_no_init = _config_zero_init(config)
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
                for name, param in model.named_parameters():
                    if param.requires_grad:
117
118
119
120
121
                        self.assertIn(
                            param.data.mean().item(),
                            [0.0, 1.0],
                            msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                        )
thomwolf's avatar
thomwolf committed
122

123
124
125
126
127
        def test_determinism(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                model = model_class(config)
128
                model.to(torch_device)
129
                model.eval()
thomwolf's avatar
thomwolf committed
130
131
132
                with torch.no_grad():
                    first = model(**inputs_dict)[0]
                    second = model(**inputs_dict)[0]
thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
                out_1 = first.cpu().numpy()
                out_2 = second.cpu().numpy()
                out_1 = out_1[~np.isnan(out_1)]
                out_2 = out_2[~np.isnan(out_2)]
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
139

thomwolf's avatar
thomwolf committed
140
141
142
        def test_attention_outputs(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            decoder_seq_length = (
                self.model_tester.decoder_seq_length
                if hasattr(self.model_tester, "decoder_seq_length")
                else self.model_tester.seq_length
            )
            encoder_seq_length = (
                self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "encoder_seq_length")
                else self.model_tester.seq_length
            )
            decoder_key_length = (
                self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
            )
            encoder_key_length = (
                self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
            )
thomwolf's avatar
thomwolf committed
159

thomwolf's avatar
thomwolf committed
160
161
162
163
            for model_class in self.all_model_classes:
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config)
164
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
165
                model.eval()
thomwolf's avatar
thomwolf committed
166
167
                with torch.no_grad():
                    outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
168
169
170
171
172
173
                attentions = outputs[-1]
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, False)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
174
175
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
176
177
                out_len = len(outputs)

thomwolf's avatar
thomwolf committed
178
                if self.is_encoder_decoder:
179
                    self.assertEqual(out_len % 2, 0)
180
                    decoder_attentions = outputs[(out_len // 2) - 1]
thomwolf's avatar
thomwolf committed
181
182
                    self.assertEqual(model.config.output_attentions, True)
                    self.assertEqual(model.config.output_hidden_states, False)
183
                    self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
184
                    self.assertListEqual(
185
                        list(decoder_attentions[0].shape[-3:]),
186
187
                        [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
188

thomwolf's avatar
thomwolf committed
189
190
191
192
                # Check attention is always last and order is fine
                config.output_attentions = True
                config.output_hidden_states = True
                model = model_class(config)
193
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
194
                model.eval()
thomwolf's avatar
thomwolf committed
195
196
                with torch.no_grad():
                    outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
197
                self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
thomwolf's avatar
thomwolf committed
198
199
200
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, True)

thomwolf's avatar
thomwolf committed
201
202
                self_attentions = outputs[-1]
                self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
203
                self.assertListEqual(
thomwolf's avatar
thomwolf committed
204
                    list(self_attentions[0].shape[-3:]),
205
206
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

        def test_torchscript(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            self._create_and_check_torchscript(config, inputs_dict)

        def test_torchscript_output_attentions(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            config.output_attentions = True
            self._create_and_check_torchscript(config, inputs_dict)

        def test_torchscript_output_hidden_state(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            config.output_hidden_states = True
            self._create_and_check_torchscript(config, inputs_dict)

        def _create_and_check_torchscript(self, config, inputs_dict):
            if not self.test_torchscript:
                return

            configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
            configs_no_init.torchscript = True
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
233
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
234
                model.eval()
235
                inputs = inputs_dict["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
236
237

                try:
238
                    traced_gpt2 = torch.jit.trace(model, inputs)
thomwolf's avatar
thomwolf committed
239
240
241
                except RuntimeError:
                    self.fail("Couldn't trace module.")

242
243
                with TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
244

245
246
247
248
249
250
251
252
253
                    try:
                        torch.jit.save(traced_gpt2, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
thomwolf's avatar
thomwolf committed
254

255
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
256
                model.eval()
257
258

                loaded_model.to(torch_device)
thomwolf's avatar
thomwolf committed
259
260
261
262
263
264
265
266
267
268
269
270
271
                loaded_model.eval()

                model_params = model.parameters()
                loaded_model_params = loaded_model.parameters()

                models_equal = True
                for p1, p2 in zip(model_params, loaded_model_params):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)

        def test_headmasking(self):
LysandreJik's avatar
LysandreJik committed
272
273
274
            if not self.test_head_masking:
                return

275
            global_rng.seed(42)
thomwolf's avatar
thomwolf committed
276
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
277
            global_rng.seed()
thomwolf's avatar
thomwolf committed
278
279
280
281
282
283

            config.output_attentions = True
            config.output_hidden_states = True
            configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
284
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
285
286
287
                model.eval()

                # Prepare head_mask
288
                # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
289
290
291
                head_mask = torch.ones(
                    self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device
                )
thomwolf's avatar
thomwolf committed
292
293
294
295
                head_mask[0, 0] = 0
                head_mask[-1, :-1] = 0
                head_mask.requires_grad_(requires_grad=True)
                inputs = inputs_dict.copy()
296
                inputs["head_mask"] = head_mask
thomwolf's avatar
thomwolf committed
297
298
299
300
301
302
303
304
305
306
307
308
309

                outputs = model(**inputs)

                # Test that we can get a gradient back for importance score computation
                output = sum(t.sum() for t in outputs[0])
                output = output.sum()
                output.backward()
                multihead_outputs = head_mask.grad

                attentions = outputs[-1]
                hidden_states = outputs[-2]

                # Remove Nan
310
                for t in attentions:
311
312
313
314
315
316
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)
thomwolf's avatar
thomwolf committed
317
318
319

                self.assertIsNotNone(multihead_outputs)
                self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
320
321
322
323
324
                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
thomwolf's avatar
thomwolf committed
325
326
327
328
329
330

        def test_head_pruning(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
331
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
332
333
334
335

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

thomwolf's avatar
thomwolf committed
336
337
338
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config=config)
339
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
340
                model.eval()
341
                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
thomwolf's avatar
thomwolf committed
342
                model.prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
343
344
                with torch.no_grad():
                    outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
345
346
347

                attentions = outputs[-1]

348
349
350
                self.assertEqual(attentions[0].shape[-3], 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
thomwolf's avatar
thomwolf committed
351

352
353
354
355
356
357
        def test_head_pruning_save_load_from_pretrained(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
358
359
360
361

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

362
363
364
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config=config)
365
                model.to(torch_device)
366
                model.eval()
367
                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
368
                model.prune_heads(heads_to_prune)
369
370
371
372
373

                with TemporaryDirectory() as temp_dir_name:
                    model.save_pretrained(temp_dir_name)
                    model = model_class.from_pretrained(temp_dir_name)
                    model.to(torch_device)
374

thomwolf's avatar
thomwolf committed
375
376
                with torch.no_grad():
                    outputs = model(**inputs_dict)
377
                attentions = outputs[-1]
378
379
380
                self.assertEqual(attentions[0].shape[-3], 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
381
382
383
384
385
386
387

        def test_head_pruning_save_load_from_config_init(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
388
389
390
391

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

392
393
394
                config.output_attentions = True
                config.output_hidden_states = False

395
                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
396
397
398
                config.pruned_heads = heads_to_prune

                model = model_class(config=config)
399
                model.to(torch_device)
400
401
                model.eval()

thomwolf's avatar
thomwolf committed
402
403
                with torch.no_grad():
                    outputs = model(**inputs_dict)
404
                attentions = outputs[-1]
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

                self.assertEqual(attentions[0].shape[-3], 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)

        def test_head_pruning_integration(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

                config.output_attentions = True
                config.output_hidden_states = False

                heads_to_prune = {0: [0], 1: [1, 2]}
                config.pruned_heads = heads_to_prune

                model = model_class(config=config)
427
                model.to(torch_device)
428
429
                model.eval()

thomwolf's avatar
thomwolf committed
430
431
                with torch.no_grad():
                    outputs = model(**inputs_dict)
432
433
434
435
436
437
438
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

439
440
441
442
                with TemporaryDirectory() as temp_dir_name:
                    model.save_pretrained(temp_dir_name)
                    model = model_class.from_pretrained(temp_dir_name)
                    model.to(torch_device)
443

thomwolf's avatar
thomwolf committed
444
445
                with torch.no_grad():
                    outputs = model(**inputs_dict)
446
447
448
449
450
451
452
453
454
455
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                heads_to_prune = {0: [0], 2: [1, 2]}
                model.prune_heads(heads_to_prune)

thomwolf's avatar
thomwolf committed
456
457
                with torch.no_grad():
                    outputs = model(**inputs_dict)
458
459
                attentions = outputs[-1]

460
                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
461
462
463
464
465
466
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})

thomwolf's avatar
thomwolf committed
467
468
469
470
471
472
473
        def test_hidden_states_output(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                config.output_hidden_states = True
                config.output_attentions = False
                model = model_class(config)
474
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
475
                model.eval()
thomwolf's avatar
thomwolf committed
476
477
                with torch.no_grad():
                    outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
478
479
480
481
482
483
                hidden_states = outputs[-1]
                self.assertEqual(model.config.output_attentions, False)
                self.assertEqual(model.config.output_hidden_states, True)
                self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
484
485
486
487
488
489
490
                    [
                        self.model_tester.encoder_seq_length
                        if hasattr(self.model_tester, "encoder_seq_length")
                        else self.model_tester.seq_length,
                        self.model_tester.hidden_size,
                    ],
                )
thomwolf's avatar
thomwolf committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

        def test_resize_tokens_embeddings(self):
            original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            if not self.test_resize_embeddings:
                return

            for model_class in self.all_model_classes:
                config = copy.deepcopy(original_config)
                model = model_class(config)

                model_vocab_size = config.vocab_size
                # Retrieve the embeddings and clone theme
                model_embed = model.resize_token_embeddings(model_vocab_size)
                cloned_embeddings = model_embed.weight.clone()

                # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size + 10)
                self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

                # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size - 15)
                self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

                # Check that adding and removing tokens has not modified the first part of the embedding matrix.
                models_equal = True
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)

526
527
528
529
530
        def test_model_common_attributes(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                model = model_class(config)
531
                self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
thomwolf's avatar
thomwolf committed
532
                model.set_input_embeddings(torch.nn.Embedding(10, 10))
533
                x = model.get_output_embeddings()
534
                self.assertTrue(x is None or isinstance(x, torch.nn.Linear))
535

thomwolf's avatar
thomwolf committed
536
        def test_tie_model_weights(self):
LysandreJik's avatar
LysandreJik committed
537
538
539
            if not self.test_torchscript:
                return

thomwolf's avatar
thomwolf committed
540
541
542
543
544
545
546
547
548
549
550
551
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            def check_same_values(layer_1, layer_2):
                equal = True
                for p1, p2 in zip(layer_1.weight, layer_2.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        equal = False
                return equal

            for model_class in self.all_model_classes:
                config.torchscript = True
                model_not_tied = model_class(config)
thomwolf's avatar
thomwolf committed
552
553
554
                if model_not_tied.get_output_embeddings() is None:
                    continue

thomwolf's avatar
thomwolf committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                params_not_tied = list(model_not_tied.parameters())

                config_tied = copy.deepcopy(config)
                config_tied.torchscript = False
                model_tied = model_class(config_tied)
                params_tied = list(model_tied.parameters())

                # Check that the embedding layer and decoding layer are the same in size and in value
                self.assertGreater(len(params_not_tied), len(params_tied))
                # self.assertTrue(check_same_values(embeddings, decoding))

                # # Check that after modification, they remain the same.
                # embeddings.weight.data.div_(2)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
                # self.assertTrue(check_same_values(embeddings, decoding))

                # # Check that after modification, they remain the same.
                # decoding.weight.data.div_(4)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
                # self.assertTrue(check_same_values(embeddings, decoding))

                # Check that after resize they remain tied.
                model_tied.resize_token_embeddings(config.vocab_size + 10)
                params_tied_2 = list(model_tied.parameters())
                self.assertGreater(len(params_not_tied), len(params_tied))
                self.assertEqual(len(params_tied_2), len(params_tied))

                # decoding.weight.data.mul_(20)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
                # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

589
590
        def test_inputs_embeds(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
591
592
593
594
595
596
597
598
            if not self.is_encoder_decoder:
                input_ids = inputs_dict["input_ids"]
                del inputs_dict["input_ids"]
            else:
                encoder_input_ids = inputs_dict["encoder_input_ids"]
                decoder_input_ids = inputs_dict["decoder_input_ids"]
                del inputs_dict["encoder_input_ids"]
                del inputs_dict["decoder_input_ids"]
599
600
601

            for model_class in self.all_model_classes:
                model = model_class(config)
602
                model.to(torch_device)
603
604
605
                model.eval()

                wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
606
607
608
609
610
                if not self.is_encoder_decoder:
                    inputs_dict["inputs_embeds"] = wte(input_ids)
                else:
                    inputs_dict["encoder_inputs_embeds"] = wte(encoder_input_ids)
                    inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)
611

thomwolf's avatar
thomwolf committed
612
613
                with torch.no_grad():
                    outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
614
615

    class GPTModelTester(CommonModelTester):
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_position_ids=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            n_positions=33,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            n_choices=3,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            scope=None,
            config_class=None,
            base_model_class=None,
            lm_head_model_class=None,
            double_head_model_class=None,
        ):
thomwolf's avatar
thomwolf committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_position_ids = use_position_ids
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_positions = n_positions
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.n_choices = n_choices
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.scope = scope
            self.config_class = config_class
            self.base_model_class = base_model_class
            self.lm_head_model_class = lm_head_model_class
            self.double_head_model_class = double_head_model_class
            self.all_model_classes = (base_model_class, lm_head_model_class, double_head_model_class)

        def prepare_config_and_inputs(self):
            total_num_tokens = self.vocab_size
            input_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_num_tokens)

            position_ids = None
            if self.use_position_ids:
                position_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)

            token_type_ids = None
            if self.use_token_type_ids:
                total_voc = self.vocab_size
                token_type_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)

            mc_labels = None
            lm_labels = None
            mc_token_ids = None
            if self.use_labels:
                mc_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                lm_labels = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
                mc_token_ids = ids_tensor([self.batch_size, self.n_choices], self.seq_length)

            config = self.config_class(
thomwolf's avatar
thomwolf committed
685
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
686
687
688
689
                n_positions=self.n_positions,
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
690
691
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
692

693
            return (config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids)
thomwolf's avatar
thomwolf committed
694

695
696
697
        def create_and_check_base_model(
            self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
        ):
thomwolf's avatar
thomwolf committed
698
            model = self.base_model_class(config)
699
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
700
            model.eval()
thomwolf's avatar
thomwolf committed
701

thomwolf's avatar
thomwolf committed
702
703
704
705
            with torch.no_grad():
                outputs = model(input_ids, position_ids, token_type_ids)
                outputs = model(input_ids, position_ids)
                outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
706

thomwolf's avatar
thomwolf committed
707
708
            hidden_state = outputs[0]
            self.parent.assertListEqual(
709
710
                list(hidden_state.size()), [self.batch_size, self.n_choices, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
711

712
713
714
        def create_and_check_lm_head(
            self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
        ):
thomwolf's avatar
thomwolf committed
715
            model = self.lm_head_model_class(config)
716
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
717
            model.eval()
thomwolf's avatar
thomwolf committed
718
719
            with torch.no_grad():
                outputs = model(input_ids, position_ids, token_type_ids, lm_labels)
thomwolf's avatar
thomwolf committed
720
            loss, lm_logits = outputs[:2]
thomwolf's avatar
thomwolf committed
721

thomwolf's avatar
thomwolf committed
722
723
            total_voc = self.vocab_size
            self.parent.assertListEqual(
724
725
726
                list(lm_logits.size()), [self.batch_size, self.n_choices, self.seq_length, total_voc]
            )
            self.parent.assertListEqual(list(loss.size()), [])
thomwolf's avatar
thomwolf committed
727

728
729
730
        def create_and_check_presents(
            self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
        ):
thomwolf's avatar
thomwolf committed
731
732
            for model_class in self.all_model_classes:
                model = model_class(config)
733
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
734
                model.eval()
thomwolf's avatar
thomwolf committed
735
736
                with torch.no_grad():
                    outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
737
738
739
740
                presents = outputs[-1]
                self.parent.assertEqual(self.num_hidden_layers, len(presents))
                self.parent.assertListEqual(
                    list(presents[0].size()),
741
742
743
744
745
746
747
748
                    [
                        2,
                        self.batch_size * self.n_choices,
                        self.num_attention_heads,
                        self.seq_length,
                        self.hidden_size // self.num_attention_heads,
                    ],
                )
thomwolf's avatar
thomwolf committed
749

750
751
752
        def create_and_check_double_heads(
            self, config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids
        ):
thomwolf's avatar
thomwolf committed
753
            model = self.double_head_model_class(config)
754
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
755
            model.eval()
thomwolf's avatar
thomwolf committed
756
            with torch.no_grad():
757
758
759
760
761
762
763
764
                outputs = model(
                    input_ids,
                    mc_token_ids,
                    lm_labels=lm_labels,
                    mc_labels=mc_labels,
                    token_type_ids=token_type_ids,
                    position_ids=position_ids,
                )
thomwolf's avatar
thomwolf committed
765
766
767
768
769
            lm_loss, mc_loss, lm_logits, mc_logits = outputs[:4]
            loss = [lm_loss, mc_loss]

            total_voc = self.vocab_size
            self.parent.assertListEqual(
770
771
772
773
                list(lm_logits.size()), [self.batch_size, self.n_choices, self.seq_length, total_voc]
            )
            self.parent.assertListEqual(list(mc_logits.size()), [self.batch_size, self.n_choices])
            self.parent.assertListEqual([list(l.size()) for l in loss], [[], []])
thomwolf's avatar
thomwolf committed
774
775
776

        def create_and_check_model_from_pretrained(self):
            for model_name in list(self.base_model_class.pretrained_model_archive_map.keys())[:1]:
777
                model = self.base_model_class.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
778
779
780
781
                self.parent.assertIsNotNone(model)

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
782
783
            (config, input_ids, token_type_ids, position_ids, mc_labels, lm_labels, mc_token_ids) = config_and_inputs
            inputs_dict = {"input_ids": input_ids}
thomwolf's avatar
thomwolf committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
            return config, inputs_dict

        def run_common_tests(self, test_presents=False):
            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_base_model(*config_and_inputs)

            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_lm_head(*config_and_inputs)

            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_double_heads(*config_and_inputs)

            if test_presents:
                config_and_inputs = self.prepare_config_and_inputs()
                self.create_and_check_presents(*config_and_inputs)

800
        @slow
thomwolf's avatar
thomwolf committed
801
802
        def run_slow_tests(self):
            self.create_and_check_model_from_pretrained()
thomwolf's avatar
thomwolf committed
803
804
805
806
807
808
809
810


class ConfigTester(object):
    def __init__(self, parent, config_class=None, **kwargs):
        self.parent = parent
        self.config_class = config_class
        self.inputs_dict = kwargs

thomwolf's avatar
thomwolf committed
811
812
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
813
814
815
816
        self.parent.assertTrue(hasattr(config, "vocab_size"))
        self.parent.assertTrue(hasattr(config, "hidden_size"))
        self.parent.assertTrue(hasattr(config, "num_attention_heads"))
        self.parent.assertTrue(hasattr(config, "num_hidden_layers"))
thomwolf's avatar
thomwolf committed
817

thomwolf's avatar
thomwolf committed
818
819
820
821
822
823
824
825
    def create_and_test_config_to_json_string(self):
        config = self.config_class(**self.inputs_dict)
        obj = json.loads(config.to_json_string())
        for key, value in self.inputs_dict.items():
            self.parent.assertEqual(obj[key], value)

    def create_and_test_config_to_json_file(self):
        config_first = self.config_class(**self.inputs_dict)
826
        json_file_path = os.path.join(os.getcwd(), "config_" + str(uuid.uuid4()) + ".json")
thomwolf's avatar
thomwolf committed
827
828
829
830
831
832
        config_first.to_json_file(json_file_path)
        config_second = self.config_class.from_json_file(json_file_path)
        os.remove(json_file_path)
        self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())

    def run_common_tests(self):
thomwolf's avatar
thomwolf committed
833
        self.create_and_test_config_common_properties()
thomwolf's avatar
thomwolf committed
834
835
836
837
        self.create_and_test_config_to_json_string()
        self.create_and_test_config_to_json_file()


838
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
839
840


thomwolf's avatar
thomwolf committed
841
842
843
def ids_tensor(shape, vocab_size, rng=None, name=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
844
        rng = global_rng
thomwolf's avatar
thomwolf committed
845

thomwolf's avatar
thomwolf committed
846
847
848
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
849

thomwolf's avatar
thomwolf committed
850
851
852
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
853

854
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
855
856


857
858
859
860
861
862
863
864
865
866
867
868
869
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

870
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
871
872


873
@require_torch
thomwolf's avatar
thomwolf committed
874
class ModelUtilsTest(unittest.TestCase):
875
    @slow
thomwolf's avatar
thomwolf committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
    def test_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)

thomwolf's avatar
thomwolf committed
896

thomwolf's avatar
thomwolf committed
897
898
if __name__ == "__main__":
    unittest.main()