test_modeling_tf_marian.py 11.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
21
22
import unittest
import warnings

from transformers import AutoTokenizer, MarianConfig, MarianTokenizer, TranslationPipeline, is_tf_available
Matt's avatar
Matt committed
23
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
24
from transformers.utils import cached_property
25

Yih-Dar's avatar
Yih-Dar committed
26
27
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
28
from ...test_pipeline_mixin import PipelineTesterMixin
29
30
31
32
33


if is_tf_available():
    import tensorflow as tf

34
    from transformers import TFAutoModelForSeq2SeqLM, TFMarianModel, TFMarianMTModel
35
36


37
38
@require_tf
class TFMarianModelTester:
39
    config_cls = MarianConfig
40
41
42
43
44
45
46
47
48
49
50
51
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
52
        num_hidden_layers=2,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFMarianModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
114
        head_mask = inputs_dict["head_mask"]
115
116
117
        self.batch_size = 1

        # first forward pass
118
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_marian_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
150
151
    head_mask=None,
    decoder_head_mask=None,
152
    cross_attn_head_mask=None,
153
154
155
156
157
158
159
160
161
162
163
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
164
165
166
167
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
168
169
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
170
171
172
173
174
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
175
176
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
177
        "cross_attn_head_mask": cross_attn_head_mask,
178
    }
179
180
181


@require_tf
182
class TFMarianModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
183
    all_model_classes = (TFMarianMTModel, TFMarianModel) if is_tf_available() else ()
184
    all_generative_model_classes = (TFMarianMTModel,) if is_tf_available() else ()
185
186
187
188
189
    pipeline_model_mapping = (
        {
            "feature-extraction": TFMarianModel,
            "summarization": TFMarianMTModel,
            "text2text-generation": TFMarianMTModel,
Yih-Dar's avatar
Yih-Dar committed
190
            "translation": TFMarianMTModel,
191
192
193
194
        }
        if is_tf_available()
        else {}
    )
195
196
    is_encoder_decoder = True
    test_pruning = False
197
    test_onnx = False
198
199

    def setUp(self):
200
        self.model_tester = TFMarianModelTester(self)
201
202
203
204
205
        self.config_tester = ConfigTester(self, config_class=MarianConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

206
207
208
    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
209

210

Lysandre Debut's avatar
Lysandre Debut committed
211
@require_tf
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
class AbstractMarianIntegrationTest(unittest.TestCase):
    maxDiff = 1000  # show more chars for failing integration tests

    @classmethod
    def setUpClass(cls) -> None:
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
        return cls

    @cached_property
    def tokenizer(self) -> MarianTokenizer:
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

    @cached_property
    def model(self):
        warnings.simplefilter("error")
231
        model: TFMarianMTModel = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
232
233
234
235
236
237
238
239
240
241
242
243
        assert isinstance(model, TFMarianMTModel)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
244
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf")
245
246
247
248
249
250
251
252
253
        generated_ids = self.model.generate(
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
        )
        generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)
        return generated_words


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
254
@require_tf
255
256
257
258
259
260
261
262
class TestMarian_MT_EN(AbstractMarianIntegrationTest):
    """Cover low resource/high perplexity setting. This breaks if pad_token_id logits not set to LARGE_NEGATIVE."""

    src = "mt"
    tgt = "en"
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]

263
    @unittest.skip("Skipping until #12647 is resolved.")
264
265
266
267
268
269
270
    @slow
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
271
@require_tf
272
273
274
275
276
277
class TestMarian_en_zh(AbstractMarianIntegrationTest):
    src = "en"
    tgt = "zh"
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

278
    @unittest.skip("Skipping until #12647 is resolved.")
279
280
281
282
283
284
285
    @slow
    def test_batch_generation_en_zh(self):
        self._assert_generated_batch_equal_expected()


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
286
@require_tf
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
class TestMarian_en_ROMANCE(AbstractMarianIntegrationTest):
    """Multilingual on target side."""

    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]

303
    @unittest.skip("Skipping until #12647 is resolved.")
304
305
306
307
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
        self._assert_generated_batch_equal_expected()

308
    @unittest.skip("Skipping until #12647 is resolved.")
309
310
311
312
313
    @slow
    def test_pipeline(self):
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="tf")
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])