test_modeling_fsmt.py 23.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import timeout_decorator  # noqa
from parameterized import parameterized
21

22
from transformers import FSMTConfig, is_torch_available
23
24
25
26
27
28
29
30
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    require_torch_fp16,
    slow,
    torch_device,
)
31
from transformers.utils import cached_property
32

33
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
34
35
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
36
from ...test_pipeline_mixin import PipelineTesterMixin
37
38
39
40


if is_torch_available():
    import torch
41
    from torch import nn
42

43
    from transformers import FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
44
    from transformers.models.fsmt.modeling_fsmt import (
45
46
47
48
49
        SinusoidalPositionalEmbedding,
        _prepare_fsmt_decoder_inputs,
        invert_mask,
        shift_tokens_right,
    )
50
    from transformers.pipelines import TranslationPipeline
51
52


53
class FSMTModelTester:
54
55
56
    def __init__(
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        src_vocab_size=99,
        tgt_vocab_size=99,
        langs=["ru", "en"],
        batch_size=13,
        seq_length=7,
        is_training=False,
        use_labels=False,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="relu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        bos_token_id=0,
        pad_token_id=1,
        eos_token_id=2,
75
76
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size
        self.langs = langs
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.eos_token_id = eos_token_id
95
96
97
98
99
        torch.manual_seed(0)

        # hack needed for modeling_common tests - despite not really having this attribute in this model
        self.vocab_size = self.src_vocab_size

100
    def prepare_config_and_inputs(self):
101
102
103
104
105
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = 2  # Eos Token

106
107
108
109
110
111
        config = self.get_config()
        inputs_dict = prepare_fsmt_inputs_dict(config, input_ids)
        return config, inputs_dict

    def get_config(self):
        return FSMTConfig(
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            vocab_size=self.src_vocab_size,  # hack needed for common tests
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
        )

131
132
133
134
135
136
137
    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"]
        inputs_dict["decoder_attention_mask"] = inputs_dict["attention_mask"]
        inputs_dict["use_cache"] = False
        return config, inputs_dict

138
139
140
141
142

def prepare_fsmt_inputs_dict(
    config,
    input_ids,
    attention_mask=None,
143
144
    head_mask=None,
    decoder_head_mask=None,
145
    cross_attn_head_mask=None,
146
147
148
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
149
150
151
152
    if head_mask is None:
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
    if decoder_head_mask is None:
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
153
154
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
155
156
157
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
158
159
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
160
161
162
163
    }


@require_torch
164
class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
165
166
    all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else ()
167
168
169
170
171
    pipeline_model_mapping = (
        {
            "feature-extraction": FSMTModel,
            "summarization": FSMTForConditionalGeneration,
            "text2text-generation": FSMTForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
172
            "translation": FSMTForConditionalGeneration,
173
174
175
176
        }
        if is_torch_available()
        else {}
    )
177
178
    is_encoder_decoder = True
    test_pruning = False
179
    test_missing_keys = False
180
181

    def setUp(self):
182
        self.model_tester = FSMTModelTester(self)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        self.langs = ["en", "ru"]
        config = {
            "langs": self.langs,
            "src_vocab_size": 10,
            "tgt_vocab_size": 20,
        }
        # XXX: hack to appease to all other models requiring `vocab_size`
        config["vocab_size"] = 99  # no such thing in FSMT
        self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config)

    def test_config(self):
        self.config_tester.run_common_tests()

    # XXX: override test_model_common_attributes / different Embedding type
    def test_model_common_attributes(self):
198
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
199
200
201

        for model_class in self.all_model_classes:
            model = model_class(config)
202
203
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
204
            x = model.get_output_embeddings()
205
            self.assertTrue(x is None or isinstance(x, nn.modules.sparse.Embedding))
206
207

    def test_initialization_more(self):
208
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        model = FSMTModel(config)
        model.to(torch_device)
        model.eval()
        # test init
        # self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item())

        def _check_var(module):
            """Check that we initialized various parameters from N(0, config.init_std)."""
            self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2)

        _check_var(model.encoder.embed_tokens)
        _check_var(model.encoder.layers[0].self_attn.k_proj)
        _check_var(model.encoder.layers[0].fc1)
        # XXX: different std for fairseq version of SinusoidalPositionalEmbedding
        # self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2)

    def test_advanced_inputs(self):
226
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        config.use_cache = False
        inputs_dict["input_ids"][:, -2:] = config.pad_token_id
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, inputs_dict["input_ids"]
        )
        model = FSMTModel(config).to(torch_device).eval()

        decoder_features_with_created_mask = model(**inputs_dict)[0]
        decoder_features_with_passed_mask = model(
            decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict
        )[0]
        _assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask)
        useless_mask = torch.zeros_like(decoder_attn_mask)
        decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0]
        self.assertTrue(isinstance(decoder_features, torch.Tensor))  # no hidden states or attentions
        self.assertEqual(
            decoder_features.size(),
            (self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size),
        )
        if decoder_attn_mask.min().item() < -1e3:  # some tokens were masked
            self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item())

        # Test different encoder attention masks
        decoder_features_with_long_encoder_mask = model(
            inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long()
        )[0]
        _assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask)

255
    def test_save_load_missing_keys(self):
256
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
257

258
259
260
261
262
263
264
265
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

266
    @unittest.skip("Test has a segmentation fault on torch 1.8.0")
267
268
269
270
271
272
273
274
275
276
277
278
279
    def test_export_to_onnx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        model = FSMTModel(config).to(torch_device)
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
                model,
                (inputs_dict["input_ids"], inputs_dict["attention_mask"]),
                f"{tmpdirname}/fsmt_test.onnx",
                export_params=True,
                opset_version=12,
                input_names=["input_ids", "attention_mask"],
            )

280
281
    def test_ensure_weights_are_shared(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
282
283

        config.tie_word_embeddings = True
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        model = FSMTForConditionalGeneration(config)

        # FSMT shares three weights.
        # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors.
        self.assertEqual(
            len(
                {
                    model.get_output_embeddings().weight.data_ptr(),
                    model.get_input_embeddings().weight.data_ptr(),
                    model.base_model.decoder.output_projection.weight.data_ptr(),
                }
            ),
            1,
        )

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        config.tie_word_embeddings = False
        model = FSMTForConditionalGeneration(config)

        # FSMT shares three weights.
        # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors.
        self.assertEqual(
            len(
                {
                    model.get_output_embeddings().weight.data_ptr(),
                    model.get_input_embeddings().weight.data_ptr(),
                    model.base_model.decoder.output_projection.weight.data_ptr(),
                }
            ),
            2,
        )

315
316
317
318
319
320
321
322
    @unittest.skip("can't be implemented for FSMT due to dual vocab.")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip("Passing inputs_embeds not implemented for FSMT.")
    def test_inputs_embeds(self):
        pass

323
324
325
326
    @unittest.skip("Input ids is required for FSMT.")
    def test_inputs_embeds_matches_input_ids(self):
        pass

327
328
329
330
    @unittest.skip("model weights aren't tied in FSMT.")
    def test_tie_model_weights(self):
        pass

331
332
333
    @unittest.skip("TODO: Decoder embeddings cannot be resized at the moment")
    def test_resize_embeddings_untied(self):
        pass
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385


@require_torch
class FSMTHeadTests(unittest.TestCase):
    src_vocab_size = 99
    tgt_vocab_size = 99
    langs = ["ru", "en"]

    def _get_config(self):
        return FSMTConfig(
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            eos_token_id=2,
            pad_token_id=1,
            bos_token_id=0,
        )

    def _get_config_and_data(self):
        input_ids = torch.tensor(
            [
                [71, 82, 18, 33, 46, 91, 2],
                [68, 34, 26, 58, 30, 82, 2],
                [5, 97, 17, 39, 94, 40, 2],
                [76, 83, 94, 25, 70, 78, 2],
                [87, 59, 41, 35, 48, 66, 2],
                [55, 13, 16, 58, 5, 2, 1],  # note padding
                [64, 27, 31, 51, 12, 75, 2],
                [52, 64, 86, 17, 83, 39, 2],
                [48, 61, 9, 24, 71, 82, 2],
                [26, 1, 60, 48, 22, 13, 2],
                [21, 5, 62, 28, 14, 76, 2],
                [45, 98, 37, 86, 59, 48, 2],
                [70, 70, 50, 9, 28, 0, 2],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        batch_size = input_ids.shape[0]
        config = self._get_config()
        return config, input_ids, batch_size

    def test_generate_beam_search(self):
386
        input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], dtype=torch.long, device=torch_device)
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        config = self._get_config()
        lm_model = FSMTForConditionalGeneration(config).to(torch_device)
        lm_model.eval()

        max_length = 5
        new_input_ids = lm_model.generate(
            input_ids.clone(),
            do_sample=True,
            num_return_sequences=1,
            num_beams=2,
            no_repeat_ngram_size=3,
            max_length=max_length,
        )
        self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length))

    def test_shift_tokens_right(self):
403
        input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
404
405
406
407
408
409
410
        shifted = shift_tokens_right(input_ids, 1)
        n_pad_before = input_ids.eq(1).float().sum()
        n_pad_after = shifted.eq(1).float().sum()
        self.assertEqual(shifted.shape, input_ids.shape)
        self.assertEqual(n_pad_after, n_pad_before - 1)
        self.assertTrue(torch.eq(shifted[:, 0], 2).all())

411
    @require_torch_fp16
412
413
414
415
    def test_generate_fp16(self):
        config, input_ids, batch_size = self._get_config_and_data()
        attention_mask = input_ids.ne(1).to(torch_device)
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
416
        model.half()
417
418
419
420
421
422
423
424
425
426
427
428
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

    def test_dummy_inputs(self):
        config, *_ = self._get_config_and_data()
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        model(**model.dummy_inputs)

    def test_prepare_fsmt_decoder_inputs(self):
        config, *_ = self._get_config_and_data()
        input_ids = _long_tensor(([4, 4, 2]))
        decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]])
Yih-Dar's avatar
Yih-Dar committed
429
430
        causal_mask_dtype = torch.float32
        ignore = torch.finfo(causal_mask_dtype).min
431
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
Yih-Dar's avatar
Yih-Dar committed
432
            config, input_ids, decoder_input_ids, causal_mask_dtype=causal_mask_dtype
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        )
        expected_causal_mask = torch.tensor(
            [[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]]  # never attend to the final token, because its pad
        ).to(input_ids.device)
        self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size())
        self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all())


def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
450
451
452
        if len(prefix) > 0:
            prefix = f"{prefix}: "
        raise AssertionError(f"{prefix}{a} != {b}")
453
454
455
456
457
458
459
460
461


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)


TOLERANCE = 1e-4


462
463
464
465
466
467
468
469
pairs = [
    ["en-ru"],
    ["ru-en"],
    ["en-de"],
    ["de-en"],
]


470
@require_torch
471
472
@require_sentencepiece
@require_tokenizers
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
class FSMTModelIntegrationTests(unittest.TestCase):
    tokenizers_cache = {}
    models_cache = {}
    default_mname = "facebook/wmt19-en-ru"

    @cached_property
    def default_tokenizer(self):
        return self.get_tokenizer(self.default_mname)

    @cached_property
    def default_model(self):
        return self.get_model(self.default_mname)

    def get_tokenizer(self, mname):
        if mname not in self.tokenizers_cache:
            self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname)
        return self.tokenizers_cache[mname]

    def get_model(self, mname):
        if mname not in self.models_cache:
            self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device)
            if torch_device == "cuda":
                self.models_cache[mname].half()
        return self.models_cache[mname]

    @slow
    def test_inference_no_head(self):
        tokenizer = self.default_tokenizer
        model = FSMTModel.from_pretrained(self.default_mname).to(torch_device)

        src_text = "My friend computer will translate this for me"
        input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"]
505
        input_ids = _long_tensor(input_ids).to(torch_device)
506
507
508
509
510
511
512
513
514
        inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids)
        with torch.no_grad():
            output = model(**inputs_dict)[0]
        expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size))
        self.assertEqual(output.shape, expected_shape)
        # expected numbers were generated when en-ru model, using just fairseq's model4.pt
        # may have to adjust if switched to a different checkpoint
        expected_slice = torch.tensor(
            [[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]]
515
        ).to(torch_device)
516
517
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))

518
    def translation_setup(self, pair):
519
520
521
522
523
524
525
526
527
528
        text = {
            "en": "Machine learning is great, isn't it?",
            "ru": "袦邪褕懈薪薪芯械 芯斜褍褔械薪懈械 - 褝褌芯 蟹写芯褉芯胁芯, 薪械 褌邪泻 谢懈?",
            "de": "Maschinelles Lernen ist gro脽artig, oder?",
        }

        src, tgt = pair.split("-")
        print(f"Testing {src} -> {tgt}")
        mname = f"facebook/wmt19-{pair}"

529
530
        src_text = text[src]
        tgt_text = text[tgt]
531
532
533

        tokenizer = self.get_tokenizer(mname)
        model = self.get_model(mname)
534
535
536
537
538
539
540
541
        return tokenizer, model, src_text, tgt_text

    @parameterized.expand(pairs)
    @slow
    def test_translation_direct(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)

        input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device)
542
543
544

        outputs = model.generate(input_ids)
        decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
545
546
547
548
549
550
        assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n"

    @parameterized.expand(pairs)
    @slow
    def test_translation_pipeline(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)
551
        pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=torch_device)
552
553
        output = pipeline([src_text])
        self.assertEqual([tgt_text], [x["translation_text"] for x in output])
554
555
556
557
558
559
560
561
562


@require_torch
class TestSinusoidalPositionalEmbeddings(unittest.TestCase):
    padding_idx = 1
    tolerance = 1e-4

    def test_basic(self):
        input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
563
        emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to(
564
565
566
567
568
569
570
571
            torch_device
        )
        emb = emb1(input_ids)
        desired_weights = torch.tensor(
            [
                [9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00],
                [1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00],
            ]
572
        ).to(torch_device)
573
574
575
576
577
578
579
        self.assertTrue(
            torch.allclose(emb[0], desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
        )

    def test_odd_embed_dim(self):
        # odd embedding_dim  is allowed
580
        SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device)
581
582

        # odd num_embeddings is allowed
583
        SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device)
584
585
586
587
588
589
590
591
592
593

    @unittest.skip("different from marian (needs more research)")
    def test_positional_emb_weights_against_marian(self):
        desired_weights = torch.tensor(
            [
                [0, 0, 0, 0, 0],
                [0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374],
                [0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258],
            ]
        )
594
        emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to(
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
            torch_device
        )
        weights = emb1.weights.data[:3, :5]
        # XXX: only the 1st and 3rd lines match - this is testing against
        # verbatim copy of SinusoidalPositionalEmbedding from fairseq
        self.assertTrue(
            torch.allclose(weights, desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
        )

        # test that forward pass is just a lookup, there is no ignore padding logic
        input_ids = torch.tensor(
            [[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device
        )
        no_cache_pad_zero = emb1(input_ids)[0]
        # XXX: only the 1st line matches the 3rd
        self.assertTrue(
            torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3)
        )