modeling_tf_bert_test.py 14.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest
import shutil
thomwolf's avatar
thomwolf committed
21
import sys
thomwolf's avatar
thomwolf committed
22
23
24

from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
25
from .utils import require_tf, slow
thomwolf's avatar
thomwolf committed
26

27
from transformers import BertConfig, is_tf_available
thomwolf's avatar
thomwolf committed
28

thomwolf's avatar
thomwolf committed
29
if is_tf_available():
thomwolf's avatar
thomwolf committed
30
    import tensorflow as tf
31
    from transformers.modeling_tf_bert import (TFBertModel, TFBertForMaskedLM,
thomwolf's avatar
thomwolf committed
32
33
34
35
36
37
38
                                                       TFBertForNextSentencePrediction,
                                                       TFBertForPreTraining,
                                                       TFBertForSequenceClassification,
                                                       TFBertForMultipleChoice,
                                                       TFBertForTokenClassification,
                                                       TFBertForQuestionAnswering,
                                                       TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP)
thomwolf's avatar
thomwolf committed
39

thomwolf's avatar
thomwolf committed
40

41
@require_tf
thomwolf's avatar
thomwolf committed
42
43
class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):

thomwolf's avatar
thomwolf committed
44
45
46
    all_model_classes = (TFBertModel, TFBertForMaskedLM, TFBertForNextSentencePrediction,
                         TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification,
                         TFBertForTokenClassification) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    class TFBertModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_input_mask=True,
                     use_token_type_ids=True,
                     use_labels=True,
                     vocab_size=99,
                     hidden_size=32,
                     num_hidden_layers=5,
                     num_attention_heads=4,
                     intermediate_size=37,
                     hidden_act="gelu",
                     hidden_dropout_prob=0.1,
                     attention_probs_dropout_prob=0.1,
                     max_position_embeddings=512,
                     type_vocab_size=16,
                     type_sequence_label_size=2,
                     initializer_range=0.02,
                     num_labels=3,
                     num_choices=4,
                     scope=None,
                    ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = BertConfig(
                vocab_size_or_config_json_file=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

        def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            model = TFBertModel(config=config)
            inputs = {'input_ids': input_ids,
                      'attention_mask': input_mask,
                      'token_type_ids': token_type_ids}
thomwolf's avatar
thomwolf committed
136
            sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
                list(result["sequence_output"].shape),
                [self.batch_size, self.seq_length, self.hidden_size])
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])


        def create_and_check_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
thomwolf's avatar
thomwolf committed
154
155
156
157
158
159
160
161
162
163
164
            model = TFBertForMaskedLM(config=config)
            inputs = {'input_ids': input_ids,
                      'attention_mask': input_mask,
                      'token_type_ids': token_type_ids}
            prediction_scores, = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].shape),
                [self.batch_size, self.seq_length, self.vocab_size])
thomwolf's avatar
thomwolf committed
165
166
167


        def create_and_check_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
thomwolf's avatar
thomwolf committed
168
169
170
171
172
173
174
175
176
177
178
            model = TFBertForNextSentencePrediction(config=config)
            inputs = {'input_ids': input_ids,
                      'attention_mask': input_mask,
                      'token_type_ids': token_type_ids}
            seq_relationship_score, = model(inputs)
            result = {
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].shape),
                [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
179
180
181


        def create_and_check_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
thomwolf's avatar
thomwolf committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            model = TFBertForPreTraining(config=config)
            inputs = {'input_ids': input_ids,
                      'attention_mask': input_mask,
                      'token_type_ids': token_type_ids}
            prediction_scores, seq_relationship_score = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].shape),
                [self.batch_size, self.seq_length, self.vocab_size])
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].shape),
                [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
197
198


thomwolf's avatar
thomwolf committed
199
200
201
202
203
204
205
206
207
208
209
210
211
        def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            config.num_labels = self.num_labels
            model = TFBertForSequenceClassification(config=config)
            inputs = {'input_ids': input_ids,
                      'attention_mask': input_mask,
                      'token_type_ids': token_type_ids}
            logits, = model(inputs)
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
                list(result["logits"].shape),
                [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
212
213


thomwolf's avatar
thomwolf committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        def create_and_check_bert_for_multiple_choice(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            config.num_choices = self.num_choices
            model = TFBertForMultipleChoice(config=config)
            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
            inputs = {'input_ids': multiple_choice_inputs_ids,
                      'attention_mask': multiple_choice_input_mask,
                      'token_type_ids': multiple_choice_token_type_ids}
            logits, = model(inputs)
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
                list(result["logits"].shape),
                [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
230
231
232


        def create_and_check_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240
241
242
243
244
            config.num_labels = self.num_labels
            model = TFBertForTokenClassification(config=config)
            inputs = {'input_ids': input_ids,
                      'attention_mask': input_mask,
                      'token_type_ids': token_type_ids}
            logits, = model(inputs)
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
                list(result["logits"].shape),
                [self.batch_size, self.seq_length, self.num_labels])
thomwolf's avatar
thomwolf committed
245
246


thomwolf's avatar
thomwolf committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        def create_and_check_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            model = TFBertForQuestionAnswering(config=config)
            inputs = {'input_ids': input_ids,
                      'attention_mask': input_mask,
                      'token_type_ids': token_type_ids}
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
            self.parent.assertListEqual(
                list(result["start_logits"].shape),
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["end_logits"].shape),
                [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310


        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, token_type_ids, input_mask,
             sequence_labels, token_labels, choice_labels) = config_and_inputs
            inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFBertModelTest.TFBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)

311
    @slow
thomwolf's avatar
thomwolf committed
312
    def test_model_from_pretrained(self):
313
        cache_dir = "/tmp/transformers_test/"
314
315
        # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
        for model_name in ['bert-base-uncased']:
thomwolf's avatar
thomwolf committed
316
317
318
319
320
321
            model = TFBertModel.from_pretrained(model_name, cache_dir=cache_dir)
            shutil.rmtree(cache_dir)
            self.assertIsNotNone(model)

if __name__ == "__main__":
    unittest.main()
thomwolf's avatar
thomwolf committed
322