test_modeling_deit.py 16 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DeiT model. """


import inspect
import unittest
20
import warnings
NielsRogge's avatar
NielsRogge committed
21

22
from transformers import DeiTConfig
23
from transformers.models.auto import get_values
24
25
26
27
28
29
30
31
from transformers.testing_utils import (
    require_accelerate,
    require_torch,
    require_torch_gpu,
    require_vision,
    slow,
    torch_device,
)
32
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
33

Yih-Dar's avatar
Yih-Dar committed
34
35
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
36
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
37
38
39
40


if is_torch_available():
    import torch
41
    from torch import nn
NielsRogge's avatar
NielsRogge committed
42
43

    from transformers import (
44
45
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
46
47
48
        MODEL_MAPPING,
        DeiTForImageClassification,
        DeiTForImageClassificationWithTeacher,
NielsRogge's avatar
NielsRogge committed
49
        DeiTForMaskedImageModeling,
NielsRogge's avatar
NielsRogge committed
50
51
        DeiTModel,
    )
52
    from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
NielsRogge's avatar
NielsRogge committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


if is_vision_available():
    from PIL import Image

    from transformers import DeiTFeatureExtractor


class DeiTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
NielsRogge's avatar
NielsRogge committed
82
        encoder_stride=2,
NielsRogge's avatar
NielsRogge committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
NielsRogge's avatar
NielsRogge committed
101
        self.encoder_stride = encoder_stride
NielsRogge's avatar
NielsRogge committed
102

NielsRogge's avatar
NielsRogge committed
103
        # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
104
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
105
        self.seq_length = num_patches + 2
106

NielsRogge's avatar
NielsRogge committed
107
108
109
110
111
112
113
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

114
115
116
117
118
119
        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DeiTConfig(
NielsRogge's avatar
NielsRogge committed
120
121
122
123
124
125
126
127
128
129
130
131
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
132
            encoder_stride=self.encoder_stride,
NielsRogge's avatar
NielsRogge committed
133
134
135
136
137
138
139
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DeiTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
140
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
141

NielsRogge's avatar
NielsRogge committed
142
143
144
145
146
147
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = DeiTForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
148
            result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
NielsRogge's avatar
NielsRogge committed
149
150
151
152
153
154
155
156
157
158
        )

        # test greyscale images
        config.num_channels = 1
        model = DeiTForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
159
        self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))
NielsRogge's avatar
NielsRogge committed
160

NielsRogge's avatar
NielsRogge committed
161
162
163
164
165
166
167
168
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = DeiTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
169
170
171
172
173
174
175
176
177
178
        # test greyscale images
        config.num_channels = 1
        model = DeiTForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
179
180
181
182
183
184
185
186
187
188
189
190
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
191
class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
192
193
194
195
196
197
198
199
200
201
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            DeiTModel,
            DeiTForImageClassification,
            DeiTForImageClassificationWithTeacher,
NielsRogge's avatar
NielsRogge committed
202
            DeiTForMaskedImageModeling,
NielsRogge's avatar
NielsRogge committed
203
204
205
206
        )
        if is_torch_available()
        else ()
    )
207
208
209
210
211
212
213
214
    pipeline_model_mapping = (
        {
            "feature-extraction": DeiTModel,
            "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
        }
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
215
216
217
218
219
220
221
222
223
224
225
226

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DeiTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
227
    @unittest.skip(reason="DeiT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
228
229
230
231
232
233
234
235
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
236
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
NielsRogge's avatar
NielsRogge committed
237
            x = model.get_output_embeddings()
238
            self.assertTrue(x is None or isinstance(x, nn.Linear))
NielsRogge's avatar
NielsRogge committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
256
257
258
259
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
260
261
262
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
NielsRogge's avatar
NielsRogge committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    # special case for DeiTForImageClassificationWithTeacher model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                del inputs_dict["labels"]

        return inputs_dict

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # DeiTForImageClassificationWithTeacher supports inference-only
            if (
284
                model_class in get_values(MODEL_MAPPING)
NielsRogge's avatar
NielsRogge committed
285
286
287
288
289
290
291
292
293
294
                or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
            ):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
                continue
            # DeiTForImageClassificationWithTeacher supports inference-only
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                continue
            model = model_class(config)
310
            model.gradient_checkpointing_enable()
311
312
313
314
315
316
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if (
                model_class
                not in [
                    *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                    *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
                ]
                or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
            ):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )

                    loss.backward()

NielsRogge's avatar
NielsRogge committed
367
368
369
370
371
372
373
374
375
    @slow
    def test_model_from_pretrained(self):
        for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DeiTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
NielsRogge's avatar
NielsRogge committed
376
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
NielsRogge's avatar
NielsRogge committed
377
378
379
    return image


380
@require_torch
NielsRogge's avatar
NielsRogge committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
@require_vision
class DeiTModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            DeiTFeatureExtractor.from_pretrained("facebook/deit-base-distilled-patch16-224")
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to(
            torch_device
        )

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
402
403
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
404
405
406
407
408
409
410
411

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

    @slow
    @require_accelerate
    @require_torch_gpu
    def test_inference_fp16(self):
        r"""
        A small test to make sure that inference work in half precision without any problem.
        """
        model = DeiTModel.from_pretrained(
            "facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto"
        )
        feature_extractor = self.default_feature_extractor

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass to make sure inference works in fp16
        with torch.no_grad():
            _ = model(pixel_values)