test_tokenization_deberta_v2.py 7.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# coding=utf-8
# Copyright 2019 Hugging Face inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest

from transformers import DebertaV2Tokenizer
from transformers.testing_utils import require_sentencepiece, require_tokenizers

from .test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/spiece.model")


@require_sentencepiece
@require_tokenizers
class DebertaV2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = DebertaV2Tokenizer
    rust_tokenizer_class = None
    test_rust_tokenizer = False
35
36
    test_sentencepiece = True
    test_sentencepiece_ignore_case = True
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = DebertaV2Tokenizer(SAMPLE_VOCAB)
        tokenizer.save_pretrained(self.tmpdirname)

    def get_input_output_texts(self, tokenizer):
        input_text = "this is a test"
        output_text = "this is a test"
        return input_text, output_text

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is falsé."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

    def test_full_tokenizer(self):
        tokenizer = DebertaV2Tokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁", "[UNK]", "his", "▁is", "▁a", "▁test"])

        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [13, 1, 4398, 25, 21, 1289])

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        # fmt: off
        self.assertListEqual(
            tokens,
            ["▁", "[UNK]", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "[UNK]", "."],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."],
        )
        # fmt: on

    def test_sequence_builders(self):
        tokenizer = DebertaV2Tokenizer(SAMPLE_VOCAB)

        text = tokenizer.encode("sequence builders")
        text_2 = tokenizer.encode("multi-sequence build")

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
        assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
            tokenizer.sep_token_id
        ]

    def test_tokenizer_integration(self):
        tokenizer_classes = [self.tokenizer_class]
        if self.test_rust_tokenizer:
            tokenizer_classes.append(self.rust_tokenizer_class)

        for tokenizer_class in tokenizer_classes:
            tokenizer = tokenizer_class.from_pretrained("microsoft/deberta-xlarge-v2")

            sequences = [
                [
                    "DeBERTa: Decoding-enhanced BERT with Disentangled Attention",
                    "DeBERTa: Decoding-enhanced BERT with Disentangled Attention",
                ],
                [
                    "Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks.",
                    "DeBERTa: Decoding-enhanced BERT with Disentangled Attention",
                ],
                [
                    "In this paper we propose a new model architecture DeBERTa",
                    "DeBERTa: Decoding-enhanced BERT with Disentangled Attention",
                ],
            ]

            encoding = tokenizer(sequences, padding=True)
            decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]]

            # fmt: off
            expected_encoding = {
                'input_ids': [
                    [1, 1804, 69418, 191, 43, 117056, 18, 44596, 448, 37132, 19, 8655, 10625, 69860, 21149, 2, 1804, 69418, 191, 43, 117056, 18, 44596, 448, 37132, 19, 8655, 10625, 69860, 21149, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [1, 9755, 1944, 11, 1053, 18, 16899, 12730, 1072, 1506, 45, 2497, 2510, 5, 610, 9, 127, 699, 1072, 2101, 36, 99388, 53, 2930, 4, 2, 1804, 69418, 191, 43, 117056, 18, 44596, 448, 37132, 19, 8655, 10625, 69860, 21149, 2],
                    [1, 84, 32, 778, 42, 9441, 10, 94, 735, 3372, 1804, 69418, 191, 2, 1804, 69418, 191, 43, 117056, 18, 44596, 448, 37132, 19, 8655, 10625, 69860, 21149, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                'token_type_ids': [
                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                'attention_mask': [
                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
                ]
            }

            expected_decoded_sequences = [
                'DeBERTa: Decoding-enhanced BERT with Disentangled Attention DeBERTa: Decoding-enhanced BERT with Disentangled Attention',
                'Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks. DeBERTa: Decoding-enhanced BERT with Disentangled Attention',
                'In this paper we propose a new model architecture DeBERTa DeBERTa: Decoding-enhanced BERT with Disentangled Attention'
            ]
            # fmt: on

            self.assertDictEqual(encoding.data, expected_encoding)

            for expected, decoded in zip(expected_decoded_sequences, decoded_sequences):
                self.assertEqual(expected, decoded)