README.md 6.39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

17
# Image classification example
18

19
This directory contains a script, `run_image_classification.py`, that showcases how to fine-tune any model supported by the [`AutoModelForImageClassification` API](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForImageClassification) (such as [ViT](https://huggingface.co/docs/transformers/main/en/model_doc/vit), [ConvNeXT]((https://huggingface.co/docs/transformers/main/en/model_doc/convnext)), [ResNet]((https://huggingface.co/docs/transformers/main/en/model_doc/resnet)), [Swin Transformer]((https://huggingface.co/docs/transformers/main/en/model_doc/swin))...) using PyTorch. It can be used to fine-tune models on both well-known datasets (like [CIFAR-10](https://huggingface.co/datasets/cifar10), [Fashion MNIST](https://huggingface.co/datasets/fashion_mnist), ...) as well as on your own custom data.
20

21
22
23
This page includes 2 sections:
- [Using datasets from the hub](#using-datasets-from-🤗-hub)
- [Using your own data](#using-your-own-data).
24

25
26
27
28

## Using datasets from 🤗 `Hub`

Here we show how to fine-tune a Vision Transformer (`ViT`) on the [beans](https://huggingface.co/datasets/beans) dataset, to classify the disease type of bean leaves.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

👀 See the results here: [nateraw/vit-base-beans](https://huggingface.co/nateraw/vit-base-beans).

```bash
python run_image_classification.py \
    --dataset_name beans \
    --output_dir ./beans_outputs/ \
    --remove_unused_columns False \
    --do_train \
    --do_eval \
    --push_to_hub \
    --push_to_hub_model_id vit-base-beans \
    --learning_rate 2e-5 \
    --num_train_epochs 5 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --logging_strategy steps \
    --logging_steps 10 \
    --evaluation_strategy epoch \
    --save_strategy epoch \
    --load_best_model_at_end True \
    --save_total_limit 3 \
    --seed 1337
```

54
To fine-tune another model, simply provide the `--model_name_or_path` argument. To train on another dataset, simply set the `--dataset_name` argument. 
55
56
57
58
59

👀 See the results here: [nateraw/vit-base-cats-vs-dogs](https://huggingface.co/nateraw/vit-base-cats-vs-dogs).

## Using your own data

60
61
62
63
64
65
66
67
68
To use your own dataset, there are 2 ways: 
- you can either provide your own folders as `--train_dir` and/or `--validation_dir` arguments
- you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument.

Below, we explain both in more detail.

### Provide them as folders

If you provide your own folders with images, the script expects the following directory structure:
69
70
71
72
73
74
75
76
77
78
79

```bash
root/dog/xxx.png
root/dog/xxy.png
root/dog/[...]/xxz.png

root/cat/123.png
root/cat/nsdf3.png
root/cat/[...]/asd932_.png
```

80
In other words, you need to organize your images in subfolders, based on their class. You can then run the script like this:
81
82
83
84
85
86
87
88
89
90

```bash
python run_image_classification.py \
    --train_dir <path-to-train-root> \
    --output_dir ./outputs/ \
    --remove_unused_columns False \
    --do_train \
    --do_eval
```

91
92
93
Internally, the script will use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature which will automatically turn the folders into 🤗 Dataset objects.

#### 💡 The above will split the train dir into training and evaluation sets
94
95
96
  - To control the split amount, use the `--train_val_split` flag.
  - To provide your own validation split in its own directory, you can pass the `--validation_dir <path-to-val-root>` flag.

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
### Upload your data to the hub, as a (possibly private) repo

It's very easy (and convenient) to upload your image dataset to the hub using the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature available in 🤗 Datasets. Simply do the following:

```python
from datasets import load_dataset

# example 1: local folder
dataset = load_dataset("imagefolder", data_dir="path_to_your_folder")

# example 2: local files (suppoted formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="path_to_zip_file")

# example 3: remote files (suppoted formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip")

# example 4: providing several splits
dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]})
```

`ImageFolder` will create a `label` column, and the label name is based on the directory name.
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
Next, push it to the hub!

```python
dataset.push_to_hub("name_of_your_dataset")

# if you want to push to a private repo, simply pass private=True:
dataset.push_to_hub("name_of_your_dataset", private=True)
```

and that's it! You can now simply train your model simply by setting the `--dataset_name` argument to the name of your dataset on the hub (as explained in [Using datasets from the hub](#using-datasets-from-🤗-hub)).

More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets).

# Sharing your model on 🤗 Hub
133
134
135
136
137
138
139
140
141
142
143

0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account

1. Make sure you have `git-lfs` installed and git set up.

```bash
$ apt install git-lfs
$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"
```

144
2. Log in with your HuggingFace account credentials using `huggingface-cli`:
145
146
147
148
149
150

```bash
$ huggingface-cli login
# ...follow the prompts
```

151
152
153
154
155
156
157
158
or, in case you're running in a notebook:

```python
from huggingface_hub import notebook_login

notebook_login()
```

159
160
161
162
163
164
165
166
3. When running the script, pass the following arguments:

```bash
python run_image_classification.py \
    --push_to_hub \
    --push_to_hub_model_id <name-your-model> \
    ...
```