test_summarization_examples.py 11.5 KB
Newer Older
1
import argparse
2
import logging
3
import os
4
5
6
7
8
9
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

10
import torch
11
12
13
from torch.utils.data import DataLoader

from transformers import BartTokenizer
14

15
from .distillation import distill_main, evaluate_checkpoint
16
from .finetune import main
17
18
from .run_eval import generate_summaries, run_generate
from .utils import SummarizationDataset, lmap, pickle_load
19
20
21
22
23


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
24
25
26
27
28
29
30
31
32
33
34
FP16_EVER = False
CHEAP_ARGS = {
    "logger": "default",
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
35
36
    "output_dir": "",
    "fp16": False,
37
    "no_teacher": False,
38
    "fp16_opt_level": "O1",
39
    "gpus": 1 if torch.cuda.is_available() else 0,
40
41
42
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
43
    "do_predict": True,
44
45
46
47
48
49
50
    "gradient_accumulation_steps": 1,
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_type": "bart",
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
51
    "tokenizer_name": "facebook/bart-large",
52
53
54
55
56
57
58
59
60
61
62
    "cache_dir": "",
    "do_lower_case": False,
    "learning_rate": 3e-05,
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
    "num_train_epochs": 1,
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
63
64
65
66
67
68
69
70
71
72
73
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
74
75
}

76

77
78
79
80
81
def _dump_articles(path: Path, articles: list):
    with path.open("w") as f:
        f.write("\n".join(articles))


82
83
84
BDIR = Path("~/transformers_fork/examples/summarization/bart/").absolute()


85
86
87
88
89
90
91
92
93
94
def make_test_data_dir():
    tmp_dir = Path(tempfile.gettempdir())
    articles = [" Sam ate lunch today", "Sams lunch ingredients"]
    summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), articles)
        _dump_articles((tmp_dir / f"{split}.target"), summaries)
    return tmp_dir


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
@unittest.skip("These wont' pass until hidden_states kwarg is merged.")
class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

    @unittest.skipUnless(torch.cuda.device_count() > 1, "skipping multiGPU test")
    def test_bdc_multigpu(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
            sortish_sampler=False,
        )
        self._bart_distiller_cli(updates)

    @unittest.skipUnless(torch.cuda.is_available(), "skipping fp16 test")
    def test_bdc_fp16(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            alpha_hid=3.0,
            freeze_encoder=True,
            gpus=1,
            fp16=FP16_EVER,
            fp16_opt_level="O1",
        )
        self._bart_distiller_cli(updates)

    @unittest.skipUnless(torch.cuda.is_available(), "skipping fp16 test")
    def test_bdc_t5_eval_fp16(self):
        updates = dict(
            fp16=FP16_EVER,
            gpus=1,
            model_type="t5",
            model_name_or_path="patrickvonplaten/t5-tiny-random",
            do_train=False,
            do_predict=True,
            tokenizer_name=None,
            no_teacher=True,
        )
        self._bart_distiller_cli(updates, check_contents=False)

    @unittest.skipUnless(torch.cuda.is_available(), "skipping fp16 test")
    def test_bdc_t5_train_fp16(self):
        updates = dict(
            fp16=FP16_EVER,
            gpus=1,
            model_type="t5",
            model_name_or_path="patrickvonplaten/t5-tiny-random",
            do_train=True,
            do_predict=True,
            tokenizer_name="patrickvonplaten/t5-tiny-random",
            no_teacher=True,
        )
        self._bart_distiller_cli(updates)

    def test_bdc_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True,)
        self._bart_distiller_cli(updates)

    def test_bdc_yes_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1,)
        self._bart_distiller_cli(updates)

    def test_bdc_checkpointing(self):

        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
        )
        model = self._bart_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), len(ckpts))
        new_transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(new_transformer_ckpts), 1)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries(examples, out_path, new_transformer_ckpts[0].parent)
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

    def test_bdc_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher="patrickvonplaten/t5-tiny-random",
            model_type="t5",
            model_name_or_path="patrickvonplaten/t5-tiny-random",
            tokenizer_name="patrickvonplaten/t5-tiny-random",
        )
        self._bart_distiller_cli(updates)

    def test_bdc_t5_eval(self):
        updates = dict(
            model_type="t5",
            model_name_or_path="patrickvonplaten/t5-tiny-random",
            do_train=False,
            do_predict=True,
            tokenizer_name="patrickvonplaten/t5-tiny-random",
            no_teacher=True,
        )
        self._bart_distiller_cli(updates, check_contents=False)

    def _bart_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
            model_type="bart",
            train_batch_size=1,
            eval_batch_size=2,
            num_train_epochs=2,
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            gpus=1 if torch.cuda.is_available() else 0,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        ckpt_name = "val_avg_rouge2=0.0000-step_count=2.ckpt"  # "val_avg_rouge2=0.0000-epoch=1.ckpt"  # "epoch=1-val_avg_rouge2=0.0000.ckpt"
        contents = {os.path.basename(p) for p in contents}
        self.assertIn(ckpt_name, contents)
        self.assertIn("metrics.pkl", contents)
        self.assertIn("test_generations.txt", contents)
        self.assertIn("val_generations_1.txt", contents)
        self.assertIn("val_1_results.txt", contents)
        self.assertIn("test_results.txt", contents)
        # self.assertEqual(len(contents), 15)

        metrics = pickle_load(Path(output_dir) / "metrics.pkl")
        import pandas as pd

        val_df = pd.DataFrame(metrics["val"])
        train_df = pd.DataFrame(metrics["train"])
        test_df = pd.DataFrame(metrics["test"])
        desired_n_evals = args_d["num_train_epochs"] * 2 + 1
        self.assertEqual(val_df.shape[0], desired_n_evals)  #
        self.assertEqual(test_df.shape[1], val_df.shape[1])
        self.assertEqual(train_df.shape[0], 0)
        return model


258
class TestBartExamples(unittest.TestCase):
259
260
    @classmethod
    def setUpClass(cls):
261
262
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)
263
264
265
266
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

    def test_bart_cnn_cli(self):
267
        tmp = Path(tempfile.gettempdir()) / "utest_generations_bart_sum.hypo"
268
        output_file_name = Path(tempfile.gettempdir()) / "utest_output_bart_sum.hypo"
269
270
        articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
        _dump_articles(tmp, articles)
271
        testargs = ["run_eval.py", str(tmp), str(output_file_name), "sshleifer/bart-tiny-random"]
272
        with patch.object(sys, "argv", testargs):
273
            run_generate()
274
275
276
            self.assertTrue(Path(output_file_name).exists())
            os.remove(Path(output_file_name))

277
    def test_t5_run_sum_cli(self):
278
279
        args_d: dict = CHEAP_ARGS.copy()

280
281
282
283
284
285
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")
        args_d.update(
            data_dir=tmp_dir,
            model_type="t5",
            model_name_or_path="patrickvonplaten/t5-tiny-random",
286
            tokenizer_name=None,  # "patrickvonplaten/t5-tiny-random",
287
288
            train_batch_size=2,
            eval_batch_size=2,
289
            gpus=0,
290
291
292
            output_dir=output_dir,
            do_predict=True,
        )
293
294
295
        assert "n_train" in args_d
        args = argparse.Namespace(**args_d)
        main(args)
296
297
298
299
300
301
302

    def test_bart_summarization_dataset(self):
        tmp_dir = Path(tempfile.gettempdir())
        articles = [" Sam ate lunch today", "Sams lunch ingredients"]
        summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
        _dump_articles((tmp_dir / "train.source"), articles)
        _dump_articles((tmp_dir / "train.target"), summaries)
303
        tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
304
305
306
307
308
309
310
311
        max_len_source = max(len(tokenizer.encode(a)) for a in articles)
        max_len_target = max(len(tokenizer.encode(a)) for a in summaries)
        trunc_target = 4
        train_dataset = SummarizationDataset(
            tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target,
        )
        dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
        for batch in dataloader:
312
            self.assertEqual(batch["attention_mask"].shape, batch["input_ids"].shape)
313
            # show that articles were trimmed.
314
315
            self.assertEqual(batch["input_ids"].shape[1], max_len_source)
            self.assertGreater(20, batch["input_ids"].shape[1])  # trimmed significantly
316
317

            # show that targets were truncated
318
            self.assertEqual(batch["decoder_input_ids"].shape[1], trunc_target)  # Truncated
319
            self.assertGreater(max_len_target, trunc_target)  # Truncated
320
321


322
323
324
def list_to_text_file(lst, path):
    dest = Path(path)
    dest.open("w+").writelines(lst)