test_tokenization_t5.py 19.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
import json
import os
17
import re
18
import tempfile
19
import unittest
thomwolf's avatar
thomwolf committed
20

Lysandre Debut's avatar
Lysandre Debut committed
21
from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, T5Tokenizer, T5TokenizerFast
22
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
23
from transformers.utils import cached_property, is_tf_available, is_torch_available
thomwolf's avatar
thomwolf committed
24

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_tokenization_common import TokenizerTesterMixin
thomwolf's avatar
thomwolf committed
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
29

30
31
32
33
34
35
if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"
36

thomwolf's avatar
thomwolf committed
37

38
39
@require_sentencepiece
@require_tokenizers
40
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
41
42

    tokenizer_class = T5Tokenizer
43
44
    rust_tokenizer_class = T5TokenizerFast
    test_rust_tokenizer = True
45
    test_sentencepiece = True
thomwolf's avatar
thomwolf committed
46
47

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
48
        super().setUp()
thomwolf's avatar
thomwolf committed
49
50

        # We have a SentencePiece fixture for testing
51
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
52
53
        tokenizer.save_pretrained(self.tmpdirname)

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "<s>"
        token_id = 1

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "<unk>")
        self.assertEqual(vocab_keys[1], "<s>")
        self.assertEqual(vocab_keys[-1], "<pad>")
        self.assertEqual(len(vocab_keys), 1_101)

    def test_vocab_size(self):
        self.assertEqual(self.get_tokenizer().vocab_size, 1_100)

thomwolf's avatar
thomwolf committed
73
    def test_full_tokenizer(self):
74
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
75

76
77
        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
thomwolf's avatar
thomwolf committed
78

79
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382])
thomwolf's avatar
thomwolf committed
80

81
        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
thomwolf's avatar
thomwolf committed
82
        self.assertListEqual(
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "é",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4])
thomwolf's avatar
thomwolf committed
110
111

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )
138

139
140
141
142
    @cached_property
    def t5_base_tokenizer(self):
        return T5Tokenizer.from_pretrained("t5-base")

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    @cached_property
    def t5_base_tokenizer_fast(self):
        return T5TokenizerFast.from_pretrained("t5-base")

    def get_tokenizer(self, **kwargs) -> T5Tokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs)

    def get_rust_tokenizer(self, **kwargs) -> T5TokenizerFast:
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs)

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is falsé."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

175
176
177
178
179
180
    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

181
    def test_prepare_batch(self):
182
        tokenizer = self.t5_base_tokenizer
183
184
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, tokenizer.eos_token_id]
185
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
186
        self.assertIsInstance(batch, BatchEncoding)
187
188
189
190
191
192

        if FRAMEWORK != "jax":
            result = list(batch.input_ids.numpy()[0])
        else:
            result = list(batch.input_ids.tolist()[0])

193
        self.assertListEqual(expected_src_tokens, result)
194

195
196
        self.assertEqual((2, 9), batch.input_ids.shape)
        self.assertEqual((2, 9), batch.attention_mask.shape)
197

198
    def test_empty_target_text(self):
199
        tokenizer = self.t5_base_tokenizer
200
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
201
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
202
203
204
205
206
207
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

208
    def test_max_length(self):
209
        tokenizer = self.t5_base_tokenizer
210
211
212
213
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
214
215
216
        targets = tokenizer(
            text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
        )
217
        self.assertEqual(32, targets["input_ids"].shape[1])
218
219

    def test_outputs_not_longer_than_maxlen(self):
220
        tokenizer = self.t5_base_tokenizer
221

222
223
        batch = tokenizer(
            ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK
224
225
        )
        self.assertIsInstance(batch, BatchEncoding)
226
227
228
        # Since T5 does NOT have a max input length,
        # this test should be changed to the following in Transformers v5:
        # self.assertEqual(batch.input_ids.shape, (2, 8001))
229
230
231
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_eos_in_input(self):
232
        tokenizer = self.t5_base_tokenizer
233
        src_text = ["A long paragraph for summarization. </s>"]
234
        tgt_text = ["Summary of the text. </s>"]
235
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, 1]
236
        expected_tgt_tokens = [20698, 13, 8, 1499, 5, 1]
237

238
        batch = tokenizer(src_text, text_target=tgt_text)
239

240
        self.assertEqual(expected_src_tokens, batch["input_ids"][0])
241
        self.assertEqual(expected_tgt_tokens, batch["labels"][0])
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def test_token_type_ids(self):
        src_text_1 = ["A first paragraph for summarization."]
        src_text_2 = ["A second paragraph for summarization."]

        fast_token_type_ids = self.t5_base_tokenizer_fast(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids
        slow_token_type_ids = self.t5_base_tokenizer(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids

        self.assertEqual(slow_token_type_ids, fast_token_type_ids)
        self.assertEqual(len(slow_token_type_ids[0]), 18)

257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def test_fast_and_slow_same_result(self):
        src_text = "<pad> Today is <unk> nice day </s>"
        tgt_ids = [0, 1960, 19, 2, 1245, 239, 1]
        tgt_text = "<pad> Today is<unk> nice day</s>"

        fast_ids = self.t5_base_tokenizer_fast(src_text, add_special_tokens=False).input_ids
        slow_ids = self.t5_base_tokenizer(src_text, add_special_tokens=False).input_ids
        self.assertEqual(tgt_ids, fast_ids)
        self.assertEqual(tgt_ids, slow_ids)

        fast_text = self.t5_base_tokenizer_fast.decode(fast_ids)
        slow_text = self.t5_base_tokenizer.decode(fast_ids)
        self.assertEqual(tgt_text, fast_text)
        self.assertEqual(tgt_text, slow_text)
Lysandre Debut's avatar
Lysandre Debut committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):

                added_tokens = [f"<extra_id_{i}>" for i in range(100)] + [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
                )
                tokenizer_p = self.tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )

                p_output = tokenizer_p.encode("Hey this is a <special> token")
                r_output = tokenizer_r.encode("Hey this is a <special> token")
                cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertEqual(p_output, r_output)
                self.assertEqual(cr_output, r_output)
                self.assertTrue(special_token_id in p_output)
                self.assertTrue(special_token_id in r_output)
                self.assertTrue(special_token_id in cr_output)
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
        tokenizer_list = []
        if self.test_slow_tokenizer:
            tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))

        if self.test_rust_tokenizer:
            tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))

        for tokenizer_class, tokenizer_utils in tokenizer_list:

            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(tmp_dir)

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file:
                    special_tokens_map = json.load(json_file)

                with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file:
                    tokenizer_config = json.load(json_file)

                added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(100)]

                special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]
                tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile:
                    json.dump(special_tokens_map, outfile)
                with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile:
                    json.dump(tokenizer_config, outfile)

                # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
                # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
                # "special_tokens_map.json" files
                tokenizer_without_change_in_init = tokenizer_class.from_pretrained(
                    tmp_dir,
                )
                self.assertIn(
                    "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
                )
                # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
                self.assertEqual(
                    ["an_additional_special_token"],
                    tokenizer_without_change_in_init.convert_ids_to_tokens(
                        tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
                    ),
                )

                # Now we test that we can change the value of additional_special_tokens in the from_pretrained
                new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)]
                tokenizer = tokenizer_class.from_pretrained(
                    tmp_dir,
                    additional_special_tokens=new_added_tokens,
                )

                self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
                self.assertEqual(
                    ["a_new_additional_special_token"],
                    tokenizer.convert_ids_to_tokens(
                        tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
                    ),
                )

365
366
367
368
369
370
371
    # overwritten from `test_tokenization_common` since T5 has no max length
    def test_pretrained_model_lists(self):
        # We should have at least one default checkpoint for each tokenizer
        # We should specify the max input length as well (used in some part to list the pretrained checkpoints)
        self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
        self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)

372
373
374
375
376
377
378
379
380
381
382
    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[31220, 7, 41, 14034, 801, 38, 3, 102, 63, 17, 127, 524, 18, 7031, 2032, 277, 11, 3, 102, 63, 17, 127, 524, 18, 2026, 17, 10761, 18, 7041, 61, 795, 879, 18, 19681, 4648, 7, 41, 12920, 382, 6, 350, 6383, 4949, 6, 2158, 12920, 382, 9, 6, 3, 4, 11160, 6, 2043, 17153, 279, 49, 17, 6, 3, 4, 434, 9688, 11439, 21, 6869, 10509, 17725, 41, 567, 9138, 61, 11, 6869, 10509, 11946, 41, 18207, 517, 61, 28, 147, 3538, 1220, 7140, 10761, 2250, 16, 910, 1220, 8024, 11, 1659, 1413, 32, 883, 2020, 344, 2215, 226, 6, 12901, 382, 127, 524, 11, 4738, 7, 127, 15390, 5, 1], [272, 24203, 19, 876, 12, 554, 18, 9719, 1659, 2647, 26352, 6497, 7, 45, 73, 9339, 400, 26, 1499, 57, 22801, 10760, 30, 321, 646, 11, 269, 2625, 16, 66, 7500, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [37, 1704, 4216, 3, 20400, 4418, 7, 147, 8, 19743, 1782, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}  # noqa: E501
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="t5-base",
            revision="5a7ff2d8f5117c194c7e32ec1ccbf04642cca99b",
        )
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    def test_get_sentinel_tokens(self):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=10)
        sentinel_tokens = tokenizer.get_sentinel_tokens()
        self.assertEquals(len(sentinel_tokens), 10)
        self.assertListEqual(sorted(sentinel_tokens), sorted([f"<extra_id_{str(i)}>" for i in range(0, 10)]))
        self.assertTrue([re.search("<extra_id_\d+>", token) is not None for token in sentinel_tokens])

    def test_get_sentinel_token_ids(self):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=10)
        self.assertListEqual(sorted(tokenizer.get_sentinel_token_ids()), sorted([i for i in range(1000, 1010)]))

    def test_get_sentinel_tokens_for_fasttokenizer(self):
        tokenizer = T5TokenizerFast(SAMPLE_VOCAB, extra_ids=10)
        sentinel_tokens = tokenizer.get_sentinel_tokens()
        self.assertEquals(len(sentinel_tokens), 10)
        self.assertListEqual(sorted(sentinel_tokens), sorted([f"<extra_id_{str(i)}>" for i in range(0, 10)]))
        self.assertTrue([re.search("<extra_id_\d+>", token) is not None for token in sentinel_tokens])

    def test_get_sentinel_token_ids_for_fasttokenizer(self):
        tokenizer = T5TokenizerFast(SAMPLE_VOCAB, extra_ids=10)
        self.assertListEqual(sorted(tokenizer.get_sentinel_token_ids()), sorted([i for i in range(1000, 1010)]))