"INSTALL/grub/git@developer.sourcefind.cn:dadigang/Ventoy.git" did not exist on "2d281d7dee99b92500dfa49a96620d44fdc24243"
test_summarization_examples.py 6.49 KB
Newer Older
1
import argparse
2
import logging
3
import os
4
5
6
7
8
9
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

10
11
12
from torch.utils.data import DataLoader

from transformers import BartTokenizer
13

14
from .evaluate_cnn import run_generate
15
from .finetune import main
16
from .utils import SummarizationDataset
17
18
19
20
21
22


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
DEFAULT_ARGS = {
    "output_dir": "",
    "fp16": False,
    "fp16_opt_level": "O1",
    "n_gpu": 1,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": False,
    "gradient_accumulation_steps": 1,
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_type": "bart",
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "",
    "cache_dir": "",
    "do_lower_case": False,
    "learning_rate": 3e-05,
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
    "num_train_epochs": 1,
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
}

53

54
55
56
57
58
def _dump_articles(path: Path, articles: list):
    with path.open("w") as f:
        f.write("\n".join(articles))


59
60
61
62
63
64
65
66
67
68
def make_test_data_dir():
    tmp_dir = Path(tempfile.gettempdir())
    articles = [" Sam ate lunch today", "Sams lunch ingredients"]
    summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), articles)
        _dump_articles((tmp_dir / f"{split}.target"), summaries)
    return tmp_dir


69
class TestBartExamples(unittest.TestCase):
70
71
    @classmethod
    def setUpClass(cls):
72
73
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)
74
75
76
77
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

    def test_bart_cnn_cli(self):
78
        tmp = Path(tempfile.gettempdir()) / "utest_generations_bart_sum.hypo"
79
        output_file_name = Path(tempfile.gettempdir()) / "utest_output_bart_sum.hypo"
80
81
        articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
        _dump_articles(tmp, articles)
82
        testargs = ["evaluate_cnn.py", str(tmp), str(output_file_name), "sshleifer/bart-tiny-random"]
83
        with patch.object(sys, "argv", testargs):
84
            run_generate()
85
86
87
88
89
90
91
92
93
94
            self.assertTrue(Path(output_file_name).exists())
            os.remove(Path(output_file_name))

    def test_bart_run_sum_cli(self):
        args_d: dict = DEFAULT_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")
        args_d.update(
            data_dir=tmp_dir, model_type="bart", train_batch_size=2, eval_batch_size=2, n_gpu=0, output_dir=output_dir,
        )
95
96
        main(argparse.Namespace(**args_d))
        args_d.update({"do_train": False, "do_predict": True})
97

98
        main(argparse.Namespace(**args_d))
99
100
101
102
103
104
105
        contents = os.listdir(output_dir)
        expected_contents = {
            "checkpointepoch=0.ckpt",
            "test_results.txt",
        }
        created_files = {os.path.basename(p) for p in contents}
        self.assertSetEqual(expected_contents, created_files)
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    def test_t5_run_sum_cli(self):
        args_d: dict = DEFAULT_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")
        args_d.update(
            data_dir=tmp_dir,
            model_type="t5",
            model_name_or_path="patrickvonplaten/t5-tiny-random",
            train_batch_size=2,
            eval_batch_size=2,
            n_gpu=0,
            output_dir=output_dir,
            do_predict=True,
        )
        main(argparse.Namespace(**args_d))
122

123
124
        # args_d.update({"do_train": False, "do_predict": True})
        # main(argparse.Namespace(**args_d))
125
126
127
128
129
130
131

    def test_bart_summarization_dataset(self):
        tmp_dir = Path(tempfile.gettempdir())
        articles = [" Sam ate lunch today", "Sams lunch ingredients"]
        summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
        _dump_articles((tmp_dir / "train.source"), articles)
        _dump_articles((tmp_dir / "train.target"), summaries)
132
        tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        max_len_source = max(len(tokenizer.encode(a)) for a in articles)
        max_len_target = max(len(tokenizer.encode(a)) for a in summaries)
        trunc_target = 4
        train_dataset = SummarizationDataset(
            tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target,
        )
        dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
        for batch in dataloader:
            self.assertEqual(batch["source_mask"].shape, batch["source_ids"].shape)
            # show that articles were trimmed.
            self.assertEqual(batch["source_ids"].shape[1], max_len_source)
            self.assertGreater(20, batch["source_ids"].shape[1])  # trimmed significantly

            # show that targets were truncated
            self.assertEqual(batch["target_ids"].shape[1], trunc_target)  # Truncated
            self.assertGreater(max_len_target, trunc_target)  # Truncated
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179


class TestT5Examples(unittest.TestCase):
    def test_t5_cli(self):
        output_file_name = "output_t5_sum.txt"
        score_file_name = "score_t5_sum.txt"
        articles = ["New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)
        tmp = Path(tempfile.gettempdir()) / "utest_generations_t5_sum.hypo"
        with tmp.open("w", encoding="utf-8") as f:
            f.write("\n".join(articles))

        output_file_name = Path(tempfile.gettempdir()) / "utest_output_t5_sum.hypo"
        score_file_name = Path(tempfile.gettempdir()) / "utest_score_t5_sum.hypo"

        testargs = [
            "evaluate_cnn.py",
            str(tmp),
            str(output_file_name),
            "patrickvonplaten/t5-tiny-random",
            "--reference_path",
            str(tmp),
            "--score_path",
            str(score_file_name),
        ]

        with patch.object(sys, "argv", testargs):
            run_generate()
            self.assertTrue(Path(output_file_name).exists())
            self.assertTrue(Path(score_file_name).exists())