test_generation_utils.py 27.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
21
22
23
24
25


if is_torch_available():
    import torch

26
    from transformers import BartForConditionalGeneration, BartTokenizer, top_k_top_p_filtering
27
28
    from transformers.generation_beam_search import BeamSearchScorer
    from transformers.generation_logits_process import (
29
        HammingDiversityLogitsProcessor,
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        LogitsProcessorList,
        MinLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
        RepetitionPenaltyLogitsProcessor,
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
    )


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()

    def _get_input_ids_and_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        input_ids = inputs_dict["input_ids"]
        attention_mask = torch.ones_like(input_ids)

        # cut to half length & take max batch_size 3
        max_batch_size = 2
        sequence_length = input_ids.shape[-1] // 2
        input_ids = input_ids[:max_batch_size, :sequence_length]
        attention_mask = attention_mask[:max_batch_size, :sequence_length]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
            config.pad_token_id = config.eos_token_id
        return config, input_ids, attention_mask, max_length

    @staticmethod
65
    def _get_logits_processor_and_kwargs(input_length, eos_token_id, diversity_penalty=None):
66
67
68
69
70
71
72
73
        process_kwargs = {
            "min_length": input_length + 1,
            "bad_words_ids": [[1, 0]],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.2,
        }
        logits_processor = LogitsProcessorList(
            (
74
75
76
77
78
79
80
                [
                    HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
                ]
                if diversity_penalty is not None
                else []
            )
            + (
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
                [
                    MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
                ]
                if eos_token_id is not None
                else []
            )
            + [
                NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id),
                NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]),
                RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]),
            ]
        )
        return process_kwargs, logits_processor

    @staticmethod
    def _get_warper_and_kwargs(num_beams):
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
        logits_warper = LogitsProcessorList(
            [
Patrick von Platen's avatar
Patrick von Platen committed
100
                TemperatureLogitsWarper(warp_kwargs["temperature"]),
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
                TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
            ]
        )
        return warp_kwargs, logits_warper

    @staticmethod
    def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            max_length=max_length,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    @staticmethod
    def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            max_length=max_length,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=beam_kwargs["num_beam_groups"],
        )
        return beam_kwargs, beam_scorer

148
149
150
    @staticmethod
    def _get_encoder_outputs(model, input_ids, attention_mask, num_interleave=1):
        encoder = model.get_encoder()
151
        encoder_outputs = encoder(input_ids, attention_mask=attention_mask)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

    def test_greedy_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1], config.eos_token_id
            )

            model = model_class(config).to(torch_device)
            model.eval()

            # check `generate()` and `greedy_search()` are equal
            kwargs = {}
            if model.config.is_encoder_decoder:
                max_length = 4

            output_ids_generate = model.generate(
                input_ids,
                attention_mask=attention_mask,
                do_sample=False,
                num_beams=1,
                max_length=max_length,
                **logits_process_kwargs,
            )
183
184
185
186
187
188
189

            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                    model, input_ids, attention_mask
                )
                kwargs["encoder_outputs"] = encoder_outputs

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            with torch.no_grad():
                output_ids_greedy = model.greedy_search(
                    input_ids,
                    max_length=max_length,
                    attention_mask=attention_mask,
                    logits_processor=logits_processor,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_greedy.tolist())

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1], config.eos_token_id
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            model = model_class(config).to(torch_device)
            model.eval()

            # check `generate()` and `sample()` are equal
            if model.config.is_encoder_decoder:
                max_length = 4

            torch.manual_seed(0)
            output_ids_generate = model.generate(
                input_ids,
                do_sample=True,
                num_beams=1,
                max_length=max_length,
                attention_mask=attention_mask,
                **logits_warper_kwargs,
                **process_kwargs,
            )

            torch.manual_seed(0)
            kwargs = {}
            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                    model, input_ids, attention_mask
                )
                kwargs["encoder_outputs"] = encoder_outputs
            else:
                attention_mask_clone = attention_mask
                input_ids_clone = input_ids

            with torch.no_grad():
                output_ids_sample = model.sample(
                    input_ids_clone,
                    attention_mask=attention_mask_clone,
                    max_length=max_length,
                    logits_processor=logits_processor,
                    logits_warper=logits_warper,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_sample.tolist())

            # check `generate()` and `sample()` yield equal results for `num_return_sequences`
            num_return_sequences = 3
            if model.config.is_encoder_decoder:
                max_length = 4

            torch.manual_seed(0)
            output_ids_generate = model.generate(
                input_ids,
                do_sample=True,
                num_beams=1,
                max_length=max_length,
                num_return_sequences=num_return_sequences,
                attention_mask=attention_mask,
                **logits_warper_kwargs,
                **process_kwargs,
            )

            torch.manual_seed(0)
            kwargs = {}
            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                    model, input_ids, attention_mask, num_interleave=num_return_sequences
                )
                kwargs["encoder_outputs"] = encoder_outputs
                input_ids_clone = input_ids_clone.repeat_interleave(num_return_sequences, dim=0)
            else:
                attention_mask_clone = attention_mask.repeat_interleave(num_return_sequences, dim=0)
                input_ids_clone = input_ids.repeat_interleave(num_return_sequences, dim=0)

            with torch.no_grad():
                output_ids_sample = model.sample(
                    input_ids_clone,
                    attention_mask=attention_mask_clone,
                    max_length=max_length,
                    logits_processor=logits_processor,
                    logits_warper=logits_warper,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_sample.tolist())

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1], config.eos_token_id
            )

            model = model_class(config).to(torch_device)
            model.eval()

            # check `generate()` and `beam_search()` are equal
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_ids_generate = model.generate(
                input_ids,
                attention_mask=attention_mask,
                do_sample=False,
                max_length=max_length,
                **beam_kwargs,
                **logits_process_kwargs,
            )

            # beam_search does not automatically interleave `batch_size` dim for `num_beams`
            kwargs = {}
            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                    model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams
                )
                kwargs["encoder_outputs"] = encoder_outputs
                input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
            else:
                attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
                input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

            with torch.no_grad():
                output_ids_beam_search = model.beam_search(
                    input_ids_clone,
                    beam_scorer,
                    max_length=max_length,
                    attention_mask=attention_mask_clone,
                    logits_processor=logits_processor,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_search.tolist())

            # check `generate()` and `beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )

            output_ids_generate = model.generate(
                input_ids,
                attention_mask=attention_mask,
                do_sample=False,
                max_length=max_length,
                **beam_kwargs,
                **logits_process_kwargs,
            )
            # beam_search does not automatically interleave `batch_size` dim for `num_beams`
            kwargs = {}
            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                    model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams
                )
                kwargs["encoder_outputs"] = encoder_outputs
                input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
            else:
                attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
                input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

            with torch.no_grad():
                output_ids_beam_search = model.beam_search(
                    input_ids_clone,
                    beam_scorer,
                    max_length=max_length,
                    attention_mask=attention_mask_clone,
                    logits_processor=logits_processor,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_search.tolist())

    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
377
            print("Return dict", config.return_dict)
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            model = model_class(config).to(torch_device)
            model.eval()

            # check `generate()` and `beam_search()` are equal
            # change `num_return_sequences = 2` but not for `beam_scorer`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences
            torch.manual_seed(0)
            output_ids_generate = model.generate(
                input_ids,
                attention_mask=attention_mask,
                do_sample=True,
                max_length=max_length,
                **beam_kwargs,
                **logits_warper_kwargs,
            )
            # beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences`
            kwargs = {}
            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                    model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams * num_return_sequences
                )
                kwargs["encoder_outputs"] = encoder_outputs
            else:
                attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0)

            torch.manual_seed(0)
            with torch.no_grad():
                output_ids_beam_sample = model.beam_sample(
                    input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0),
                    beam_scorer,
                    max_length=max_length,
                    attention_mask=attention_mask,
                    logits_warper=logits_warper,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_sample.tolist())

        def test_generate_without_input_ids(self):
            config, _, _, max_length = self._get_input_ids_and_config()

            # if no bos token id => cannot generate from None
            if config.bos_token_id is None:
                return

            for model_class in self.all_generative_model_classes:
                model = model_class(config).to(torch_device)
                model.eval()

                output_ids_generate = model.generate(
                    do_sample=False,
                    max_length=max_length,
                )

                self.assertIsNotNone(output_ids_generate)

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1], config.eos_token_id, diversity_penalty=2.0
            )

            model = model_class(config).to(torch_device)
            model.eval()

            # check `generate()` and `group_beam_search()` are equal
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_ids_generate = model.generate(
                input_ids,
                attention_mask=attention_mask,
                do_sample=False,
                max_length=max_length,
                **beam_kwargs,
                **logits_process_kwargs,
            )

            # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
            kwargs = {}
            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                    model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams
                )
                kwargs["encoder_outputs"] = encoder_outputs
                input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
            else:
                attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
                input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

            with torch.no_grad():
                output_ids_group_beam_search = model.group_beam_search(
                    input_ids_clone,
                    beam_scorer,
                    max_length=max_length,
                    attention_mask=attention_mask_clone,
                    logits_processor=logits_processor,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_group_beam_search.tolist())

            # check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )

            output_ids_generate = model.generate(
                input_ids,
                attention_mask=attention_mask,
                do_sample=False,
                max_length=max_length,
                **beam_kwargs,
                **logits_process_kwargs,
            )
            # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
            kwargs = {}
            if model.config.is_encoder_decoder:
                encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                    model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams
                )
                kwargs["encoder_outputs"] = encoder_outputs
                input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
            else:
                attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
                input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

            with torch.no_grad():
                output_ids_beam_search = model.group_beam_search(
                    input_ids_clone,
                    beam_scorer,
                    max_length=max_length,
                    attention_mask=attention_mask_clone,
                    logits_processor=logits_processor,
                    **kwargs,
                )
            self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_search.tolist())

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 4 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 4 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658


@require_torch
class GenerationIntegrationTests(unittest.TestCase):
    @slow
    def test_diverse_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
            input_ids, num_beams=4, num_return_sequences=2, num_beam_groups=4, diversity_penalty=2.0
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the first child for both. The couple announced the pregnancy in January. The name Silas is the middle name of Timberlake's maternal grandfather. It's also his own middle name.",
            ],
        )