test_distributed_retriever.py 9.66 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import json
import os
import shutil
import sys
import tempfile
import unittest
from unittest import TestCase
from unittest.mock import patch

import numpy as np
from datasets import Dataset

import faiss
from transformers.configuration_bart import BartConfig
from transformers.configuration_dpr import DPRConfig
from transformers.configuration_rag import RagConfig
from transformers.file_utils import is_datasets_available, is_faiss_available, is_psutil_available, is_torch_available
18
from transformers.retrieval_rag import CustomHFIndex
19
from transformers.testing_utils import require_torch_non_multi_gpu_but_fix_me
Ola Piktus's avatar
Ola Piktus committed
20
21
22
23
24
25
26
27
from transformers.tokenization_bart import BartTokenizer
from transformers.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.tokenization_dpr import DPRQuestionEncoderTokenizer
from transformers.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES


sys.path.append(os.path.join(os.getcwd()))  # noqa: E402 # noqa: E402 # isort:skip

28
from distributed_retriever import RagPyTorchDistributedRetriever  # noqa: E402 # isort:skip
Ola Piktus's avatar
Ola Piktus committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118


def require_distributed_retrieval(test_case):
    """
    Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with
    :class:`~transformers.RagRetriever`.

    These tests are skipped when respective libraries are not installed.

    """
    if not (is_torch_available() and is_datasets_available() and is_faiss_available() and is_psutil_available()):
        test_case = unittest.skip("test requires PyTorch, Datasets, Faiss, psutil")(test_case)
    return test_case


@require_distributed_retrieval
class RagRetrieverTest(TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        self.retrieval_vector_size = 8

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

    def get_bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

119
    def get_dummy_dataset(self):
Ola Piktus's avatar
Ola Piktus committed
120
121
122
123
124
125
126
127
128
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1"],
                "text": ["foo", "bar"],
                "title": ["Foo", "Bar"],
                "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)],
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
129
130
131
132
133
134
        return dataset

    def get_dummy_pytorch_distributed_retriever(
        self, init_retrieval: bool, port=12345
    ) -> RagPyTorchDistributedRetriever:
        dataset = self.get_dummy_dataset()
Ola Piktus's avatar
Ola Piktus committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
        )
        with patch("transformers.retrieval_rag.load_dataset") as mock_load_dataset:
            mock_load_dataset.return_value = dataset
            retriever = RagPyTorchDistributedRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
            )
            if init_retrieval:
                retriever.init_retrieval(port)
        return retriever

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def get_dummy_custom_hf_index_retriever(self, init_retrieval: bool, from_disk: bool, port=12345):
        dataset = self.get_dummy_dataset()
        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
            index_name="custom",
        )
        if from_disk:
            config.passages_path = os.path.join(self.tmpdirname, "dataset")
            config.index_path = os.path.join(self.tmpdirname, "index.faiss")
            dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
            dataset.drop_index("embeddings")
            dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
            del dataset
            retriever = RagPyTorchDistributedRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
            )
        else:
            retriever = RagPyTorchDistributedRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
                index=CustomHFIndex(config.retrieval_vector_size, dataset),
            )
        if init_retrieval:
            retriever.init_retrieval(port)
        return retriever

182
    @require_torch_non_multi_gpu_but_fix_me
Ola Piktus's avatar
Ola Piktus committed
183
184
185
186
187
188
189
190
191
192
193
194
195
    def test_pytorch_distributed_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_pytorch_distributed_retriever(init_retrieval=True)
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
196
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])
197

198
    @require_torch_non_multi_gpu_but_fix_me
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def test_custom_hf_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_custom_hf_index_retriever(init_retrieval=True, from_disk=False)
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])

214
    @require_torch_non_multi_gpu_but_fix_me
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def test_custom_pytorch_distributed_retriever_retrieve_from_disk(self):
        n_docs = 1
        retriever = self.get_dummy_custom_hf_index_retriever(init_retrieval=True, from_disk=True)
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])