run_image_classification.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Pre-training/Fine-tuning ViT for image classification .

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=vit
"""

import logging
import os
import sys
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import Callable, Optional

# for dataset and preprocessing
import torch
import torchvision
import torchvision.transforms as transforms
from tqdm import tqdm

import jax
import jax.numpy as jnp
import optax
import transformers
from flax import jax_utils
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
45
from huggingface_hub import Repository
46
47
48
49
50
51
52
53
54
55
from transformers import (
    CONFIG_MAPPING,
    FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    AutoConfig,
    FlaxAutoModelForImageClassification,
    HfArgumentParser,
    TrainingArguments,
    is_tensorboard_available,
    set_seed,
)
56
from transformers.file_utils import get_full_repo_name
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209


logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    train_dir: str = field(
        metadata={"help": "Path to the root training directory which contains one subdirectory per class."}
    )
    validation_dir: str = field(
        metadata={"help": "Path to the root validation directory which contains one subdirectory per class."},
    )
    image_size: Optional[int] = field(default=224, metadata={"help": " The size (resolution) of each image."})
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
            "value if set."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray

    def replicate(self):
        return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))


def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # set seed for random transforms and torch dataloaders
    set_seed(training_args.seed)

210
211
212
213
214
215
216
217
218
219
    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(
                Path(training_args.output_dir).absolute().name, token=training_args.hub_token
            )
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    # Initialize datasets and pre-processing transforms
    # We use torchvision here for faster pre-processing
    # Note that here we are using some default pre-processing, for maximum accuray
    # one should tune this part and carefully select what transformations to use.
    normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    train_dataset = torchvision.datasets.ImageFolder(
        data_args.train_dir,
        transforms.Compose(
            [
                transforms.RandomResizedCrop(data_args.image_size),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]
        ),
    )

    eval_dataset = torchvision.datasets.ImageFolder(
        data_args.validation_dir,
        transforms.Compose(
            [
                transforms.Resize(data_args.image_size),
                transforms.CenterCrop(data_args.image_size),
                transforms.ToTensor(),
                normalize,
            ]
        ),
    )

    # Load pretrained model and tokenizer
    if model_args.config_name:
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            num_labels=len(train_dataset.classes),
            image_size=data_args.image_size,
            cache_dir=model_args.cache_dir,
        )
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            num_labels=len(train_dataset.classes),
            image_size=data_args.image_size,
            cache_dir=model_args.cache_dir,
        )
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.model_name_or_path:
        model = FlaxAutoModelForImageClassification.from_pretrained(
            model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )
    else:
        model = FlaxAutoModelForImageClassification.from_config(
            config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    def collate_fn(examples):
        pixel_values = torch.stack([example[0] for example in examples])
        labels = torch.tensor([example[1] for example in examples])

        batch = {"pixel_values": pixel_values, "labels": labels}
        batch = {k: v.numpy() for k, v in batch.items()}

        return batch

    # Create data loaders
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=train_batch_size,
        shuffle=True,
        num_workers=data_args.preprocessing_num_workers,
        persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=eval_batch_size,
        shuffle=False,
        num_workers=data_args.preprocessing_num_workers,
        persistent_workers=True,
        drop_last=True,
        collate_fn=collate_fn,
    )

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
    )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)

    def loss_fn(logits, labels):
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
        return loss.mean()

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels)

        # summarize metrics
        accuracy = (jnp.argmax(logits, axis=-1) == labels).mean()
        metrics = {"loss": loss, "accuracy": accuracy}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
    p_eval_step = jax.pmap(eval_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)
        train_metrics = []

        steps_per_epoch = len(train_dataset) // train_batch_size
        train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
        # train
        for batch in train_loader:
            batch = shard(batch)
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

            train_step_progress_bar.update(1)

        train_time += time.time() - train_start

        train_metric = unreplicate(train_metric)

        train_step_progress_bar.close()
        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
        )

        # ======================== Evaluating ==============================
        eval_metrics = []
        eval_steps = len(eval_dataset) // eval_batch_size
        eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False)
        for batch in eval_loader:
            # Model forward
            batch = shard(batch)
            metrics = p_eval_step(state.params, batch)
            eval_metrics.append(metrics)

            eval_step_progress_bar.update(1)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
        eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

        # Print metrics and update progress bar
        eval_step_progress_bar.close()
        desc = (
            f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {round(eval_metrics['loss'].item(), 4)} | "
            f"Eval Accuracy: {round(eval_metrics['accuracy'].item(), 4)})"
        )
        epochs.write(desc)
        epochs.desc = desc

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(train_dataset) // train_batch_size)
            write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)

        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
470
471
472
            model.save_pretrained(training_args.output_dir, params=params)
            if training_args.push_to_hub:
                repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False)
473
474
475
476


if __name__ == "__main__":
    main()