"examples/run_classifier.py" did not exist on "1d8511f8f2c926c72146e87029d5b0acb48bd06e"
test_finetune_trainer.py 4.22 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
import os
import sys
3
from pathlib import Path
Suraj Patil's avatar
Suraj Patil committed
4
5
from unittest.mock import patch

6
7
8
import pytest

from transformers import is_torch_available
9
from transformers.testing_utils import TestCasePlus, slow
Sylvain Gugger's avatar
Sylvain Gugger committed
10
11
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
12
13
14

from .finetune_trainer import main
from .test_seq2seq_examples import MBART_TINY
15
16
from .utils import execute_async_std

Suraj Patil's avatar
Suraj Patil committed
17

18
19
if is_torch_available():
    import torch
Suraj Patil's avatar
Suraj Patil committed
20

21
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
22
23
24
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"


25
26
27
28
29
30
31
class TestFinetuneTrainer(TestCasePlus):
    def test_finetune_trainer(self):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
32

33
34
35
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
36
        output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10)
Suraj Patil's avatar
Suraj Patil committed
37

38
39
40
41
42
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
43

44
45
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
46

47
48
49
50
51
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
52

53
    def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
54
55

        # XXX: remove hardcoded path
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        data_dir = "examples/seq2seq/test_data/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        argv = f"""
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --learning_rate 3e-4
            --warmup_steps 8
            --evaluate_during_training
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        n_gpu = torch.cuda.device_count()
        if n_gpu > 1:

            path = Path(__file__).resolve()
            cur_path = path.parents[0]

            path = Path(__file__).resolve()
            examples_path = path.parents[1]
            src_path = f"{path.parents[2]}/src"
            env = os.environ.copy()
            env["PYTHONPATH"] = f"{examples_path}:{src_path}:{env.get('PYTHONPATH', '')}"

            distributed_args = (
                f"-m torch.distributed.launch --nproc_per_node={n_gpu} {cur_path}/finetune_trainer.py".split()
            )
            cmd = [sys.executable] + distributed_args + argv

            print("\nRunning: ", " ".join(cmd))

            result = execute_async_std(cmd, env=env, stdin=None, timeout=180, quiet=False, echo=False)

            assert result.stdout, "produced no output"
            if result.returncode > 0:
                pytest.fail(f"failed with returncode {result.returncode}")
        else:
            # 0 or 1 gpu
            testargs = ["finetune_trainer.py"] + argv
            with patch.object(sys, "argv", testargs):
                main()
119

120
        return output_dir