"...git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "89de406104ba6cc6ba23e6df9c9a689f143c761c"
utils_ner.py 15.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """


import logging
import os
Julien Chaumond's avatar
Julien Chaumond committed
21
22
23
24
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union

Julien Plu's avatar
Julien Plu committed
25
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
29
30
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
31
32
33
34
@dataclass
class InputExample:
    """
    A single training/test example for token classification.
35

Julien Chaumond's avatar
Julien Chaumond committed
36
37
38
39
40
41
    Args:
        guid: Unique id for the example.
        words: list. The words of the sequence.
        labels: (Optional) list. The labels for each word of the sequence. This should be
        specified for train and dev examples, but not for test examples.
    """
42

Julien Chaumond's avatar
Julien Chaumond committed
43
44
45
    guid: str
    words: List[str]
    labels: Optional[List[str]]
46
47


Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
53
@dataclass
class InputFeatures:
    """
    A single set of features of data.
    Property names are the same names as the corresponding inputs to a model.
    """
54

Julien Chaumond's avatar
Julien Chaumond committed
55
56
57
58
    input_ids: List[int]
    attention_mask: List[int]
    token_type_ids: Optional[List[int]] = None
    label_ids: Optional[List[int]] = None
59
60


Julien Chaumond's avatar
Julien Chaumond committed
61
62
63
64
65
66
class Split(Enum):
    train = "train"
    dev = "dev"
    test = "test"


Julien Plu's avatar
Julien Plu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
if is_torch_available():
    import torch
    from torch import nn
    from torch.utils.data.dataset import Dataset
    from transformers import torch_distributed_zero_first

    class NerDataset(Dataset):
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]
        pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index
        # Use cross entropy ignore_index as padding label id so that only
        # real label ids contribute to the loss later.

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            labels: List[str],
            model_type: str,
            max_seq_length: Optional[int] = None,
            overwrite_cache=False,
            mode: Split = Split.train,
            local_rank=-1,
        ):
            # Load data features from cache or dataset file
            cached_features_file = os.path.join(
                data_dir, "cached_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length)),
            )

            with torch_distributed_zero_first(local_rank):
                # Make sure only the first process in distributed training processes the dataset,
                # and the others will use the cache.

                if os.path.exists(cached_features_file) and not overwrite_cache:
                    logger.info(f"Loading features from cached file {cached_features_file}")
                    self.features = torch.load(cached_features_file)
                else:
                    logger.info(f"Creating features from dataset file at {data_dir}")
                    examples = read_examples_from_file(data_dir, mode)
                    # TODO clean up all this to leverage built-in features of tokenizers
                    self.features = convert_examples_to_features(
                        examples,
                        labels,
                        max_seq_length,
                        tokenizer,
                        cls_token_at_end=bool(model_type in ["xlnet"]),
                        # xlnet has a cls token at the end
                        cls_token=tokenizer.cls_token,
                        cls_token_segment_id=2 if model_type in ["xlnet"] else 0,
                        sep_token=tokenizer.sep_token,
                        sep_token_extra=bool(model_type in ["roberta"]),
                        # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
                        pad_on_left=bool(tokenizer.padding_side == "left"),
                        pad_token=tokenizer.pad_token_id,
                        pad_token_segment_id=tokenizer.pad_token_type_id,
                        pad_token_label_id=self.pad_token_label_id,
                    )
                    if local_rank in [-1, 0]:
                        logger.info(f"Saving features into cached file {cached_features_file}")
                        torch.save(self.features, cached_features_file)

        def __len__(self):
            return len(self.features)

        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]


if is_tf_available():
    import tensorflow as tf

    class TFNerDataset:
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]
        pad_token_label_id: int = -1
        # Use cross entropy ignore_index as padding label id so that only
        # real label ids contribute to the loss later.

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            labels: List[str],
            model_type: str,
            max_seq_length: Optional[int] = None,
            overwrite_cache=False,
            mode: Split = Split.train,
        ):
            examples = read_examples_from_file(data_dir, mode)
            # TODO clean up all this to leverage built-in features of tokenizers
            self.features = convert_examples_to_features(
                examples,
                labels,
                max_seq_length,
                tokenizer,
                cls_token_at_end=bool(model_type in ["xlnet"]),
                # xlnet has a cls token at the end
                cls_token=tokenizer.cls_token,
                cls_token_segment_id=2 if model_type in ["xlnet"] else 0,
                sep_token=tokenizer.sep_token,
                sep_token_extra=bool(model_type in ["roberta"]),
                # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
                pad_on_left=bool(tokenizer.padding_side == "left"),
                pad_token=tokenizer.pad_token_id,
                pad_token_segment_id=tokenizer.pad_token_type_id,
                pad_token_label_id=self.pad_token_label_id,
            )

            def gen():
                for ex in self.features:
                    if ex.token_type_ids is None:
                        yield (
                            {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
                            ex.label_ids,
                        )
                    else:
                        yield (
                            {
                                "input_ids": ex.input_ids,
                                "attention_mask": ex.attention_mask,
                                "token_type_ids": ex.token_type_ids,
                            },
                            ex.label_ids,
                        )

            if "token_type_ids" not in tokenizer.model_input_names:
                self.dataset = tf.data.Dataset.from_generator(
                    gen,
                    ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64),
                    (
                        {"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])},
                        tf.TensorShape([None]),
                    ),
                )
Julien Chaumond's avatar
Julien Chaumond committed
209
            else:
Julien Plu's avatar
Julien Plu committed
210
211
212
213
214
215
216
217
218
219
220
                self.dataset = tf.data.Dataset.from_generator(
                    gen,
                    ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64),
                    (
                        {
                            "input_ids": tf.TensorShape([None]),
                            "attention_mask": tf.TensorShape([None]),
                            "token_type_ids": tf.TensorShape([None]),
                        },
                        tf.TensorShape([None]),
                    ),
Julien Chaumond's avatar
Julien Chaumond committed
221
222
                )

Julien Plu's avatar
Julien Plu committed
223
224
225
226
227
        def get_dataset(self):
            return self.dataset

        def __len__(self):
            return len(self.features)
Julien Chaumond's avatar
Julien Chaumond committed
228

Julien Plu's avatar
Julien Plu committed
229
230
        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]
Julien Chaumond's avatar
Julien Chaumond committed
231
232
233
234
235
236


def read_examples_from_file(data_dir, mode: Union[Split, str]) -> List[InputExample]:
    if isinstance(mode, Split):
        mode = mode.value
    file_path = os.path.join(data_dir, f"{mode}.txt")
237
238
239
240
241
242
243
244
    guid_index = 1
    examples = []
    with open(file_path, encoding="utf-8") as f:
        words = []
        labels = []
        for line in f:
            if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                if words:
Julien Chaumond's avatar
Julien Chaumond committed
245
                    examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
246
247
248
249
250
251
                    guid_index += 1
                    words = []
                    labels = []
            else:
                splits = line.split(" ")
                words.append(splits[0])
252
253
254
255
256
                if len(splits) > 1:
                    labels.append(splits[-1].replace("\n", ""))
                else:
                    # Examples could have no label for mode = "test"
                    labels.append("O")
257
        if words:
Julien Chaumond's avatar
Julien Chaumond committed
258
            examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
259
260
261
    return examples


262
def convert_examples_to_features(
Julien Chaumond's avatar
Julien Chaumond committed
263
264
265
266
    examples: List[InputExample],
    label_list: List[str],
    max_seq_length: int,
    tokenizer: PreTrainedTokenizer,
267
268
269
270
271
272
273
274
275
276
277
    cls_token_at_end=False,
    cls_token="[CLS]",
    cls_token_segment_id=1,
    sep_token="[SEP]",
    sep_token_extra=False,
    pad_on_left=False,
    pad_token=0,
    pad_token_segment_id=0,
    pad_token_label_id=-100,
    sequence_a_segment_id=0,
    mask_padding_with_zero=True,
Julien Chaumond's avatar
Julien Chaumond committed
278
279
) -> List[InputFeatures]:
    """ Loads a data file into a list of `InputFeatures`
280
281
282
283
284
        `cls_token_at_end` define the location of the CLS token:
            - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
            - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
        `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
    """
Julien Chaumond's avatar
Julien Chaumond committed
285
    # TODO clean up all this to leverage built-in features of tokenizers
286
287
288
289
290

    label_map = {label: i for i, label in enumerate(label_list)}

    features = []
    for (ex_index, example) in enumerate(examples):
Julien Chaumond's avatar
Julien Chaumond committed
291
        if ex_index % 10_000 == 0:
292
293
294
295
296
297
            logger.info("Writing example %d of %d", ex_index, len(examples))

        tokens = []
        label_ids = []
        for word, label in zip(example.words, example.labels):
            word_tokens = tokenizer.tokenize(word)
298
299
300
301
302
303

            # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
            if len(word_tokens) > 0:
                tokens.extend(word_tokens)
                # Use the real label id for the first token of the word, and padding ids for the remaining tokens
                label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1))
304
305

        # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
Julien Chaumond's avatar
Julien Chaumond committed
306
        special_tokens_count = tokenizer.num_special_tokens_to_add()
307
        if len(tokens) > max_seq_length - special_tokens_count:
308
309
            tokens = tokens[: (max_seq_length - special_tokens_count)]
            label_ids = label_ids[: (max_seq_length - special_tokens_count)]
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids:   0   0   0   0  0     0   0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens += [sep_token]
        label_ids += [pad_token_label_id]
        if sep_token_extra:
            # roberta uses an extra separator b/w pairs of sentences
            tokens += [sep_token]
            label_ids += [pad_token_label_id]
        segment_ids = [sequence_a_segment_id] * len(tokens)

        if cls_token_at_end:
            tokens += [cls_token]
            label_ids += [pad_token_label_id]
            segment_ids += [cls_token_segment_id]
        else:
            tokens = [cls_token] + tokens
            label_ids = [pad_token_label_id] + label_ids
            segment_ids = [cls_token_segment_id] + segment_ids

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)

        # Zero-pad up to the sequence length.
        padding_length = max_seq_length - len(input_ids)
        if pad_on_left:
            input_ids = ([pad_token] * padding_length) + input_ids
            input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
            segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
            label_ids = ([pad_token_label_id] * padding_length) + label_ids
        else:
360
361
362
363
            input_ids += [pad_token] * padding_length
            input_mask += [0 if mask_padding_with_zero else 1] * padding_length
            segment_ids += [pad_token_segment_id] * padding_length
            label_ids += [pad_token_label_id] * padding_length
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length
        assert len(label_ids) == max_seq_length

        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s", example.guid)
            logger.info("tokens: %s", " ".join([str(x) for x in tokens]))
            logger.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
            logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
            logger.info("label_ids: %s", " ".join([str(x) for x in label_ids]))

Julien Chaumond's avatar
Julien Chaumond committed
379
380
381
        if "token_type_ids" not in tokenizer.model_input_names:
            segment_ids = None

382
        features.append(
Julien Chaumond's avatar
Julien Chaumond committed
383
384
385
            InputFeatures(
                input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, label_ids=label_ids
            )
386
        )
387
388
389
    return features


Julien Chaumond's avatar
Julien Chaumond committed
390
def get_labels(path: str) -> List[str]:
391
392
393
394
395
396
397
    if path:
        with open(path, "r") as f:
            labels = f.read().splitlines()
        if "O" not in labels:
            labels = ["O"] + labels
        return labels
    else:
398
        return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]