t5-base-README.md 1.78 KB
Newer Older
1
---
Sam Shleifer's avatar
Sam Shleifer committed
2
3
4
language: en
datasets:
- c4
5
6
7
tags:
- summarization
- translation
8
9

license: apache-2.0
10
11
---

Sam Shleifer's avatar
Sam Shleifer committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) 

Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)

Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)

Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)

Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* 


## Abstract

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.

![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)